Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.043

EP2 Induces p38 Phosphorylation via the Activation of Src in HEK 293 Cells  

Chun, Kyung-Soo (College of Pharmacy, Keimyung University)
Shim, Minsub (Department of Biological Sciences, University of South Carolina)
Publication Information
Biomolecules & Therapeutics / v.23, no.6, 2015 , pp. 539-548 More about this Journal
Abstract
Prostaglandin $E_2$ ($PGE_2$), a major product of cyclooxygenase, binds to four different prostaglandin $E_2$ receptors (EP1, EP2, EP3, and EP4) which are G-protein coupled transmembrane receptors (GPCRs). Although GPCRs including EP receptors have been shown to be associated with their specific G proteins, recent evidences suggest that GPCRs can regulate MAPK signaling via non-G protein coupled pathways including Src. EP2 is differentially expressed in various tissues and the expression of EP2 is induced by extracellular stimuli. We hypothesized that an increased level of EP2 expression may affect MAPK signaling. The overexpression of EP2 in HEK 293 cells resulted in significant increase in intracellular cAMP levels response to treatment with butaprost, a specific EP2 agonist, while overexpression of EP2 alone did not increase intracellular cAMP levels. However, EP2 overexpression in the absence of $PGE_2$ induced an increase in the level of p38 phosphorylation as well as the kinase activity of p38, suggesting that up-regulation of EP2 may promote p38 activation via non-G protein coupled pathway. Inhibition of Src completely blocked EP2-induced p38 phosphorylation and overexpression of Src increased the level of p38 phosphorylation, indicating that Src is upstream kinase for EP2-induced p38 phosphorylation. EP2 overexpression also increased the Src activity and EP2 protein was co-immunoprecipitated with Src. Furthermore, sequential co-immunoprecipitation studies showed that EP2, Src, and ${\beta}$-arrestin can form a complex. Our study found a novel pathway in which EP2 is associated with Src, regulating p38 pathway.
Keywords
EP2; Prostagladin; p38; beta-arrestin; GPCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abrahamsen, H., Vang, T. and Tasken, K. (2003) Protein kinase A intersects SRC signaling in membrane microdomains. J. Biol. Chem. 278, 17170-17177.   DOI
2 Arinsburg, S. S., Cohen, I. S. and Yu, H. G. (2006) Constitutively active Src tyrosine kinase changes gating of HCN4 channels through direct binding to the channel proteins. J. Cardiovasc. Pharmacol. 47, 578-586.   DOI
3 Biscardi, J. S., Maa, M. C., Tice, D. A., Cox, M. E., Leu, T. H. and Parsons, S. J. (1999) c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J. Biol. Chem. 274, 8335-8343.   DOI
4 Bos, C. L., Richel, D. J., Ritsema, T., Peppelenbosch, M. P. and Versteeg, H. H. (2004) Prostanoids and prostanoid receptors in signal transduction. Int. J. Biochem. Cell Biol. 36, 1187-1205.   DOI
5 Buchanan, F. G., Gorden, D. L., Matta, P., Shi, Q., Matrisian, L. M. and DuBois, R. N. (2006) Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc Natl. Acad. Sci. U.S.A. 103, 1492-1497.   DOI
6 Cao, W., Luttrell, L. M., Medvedev, A. V., Pierce, K. L., Daniel, K. W., Dixon, T. M., Lefkowitz, R. J. and Collins, S. (2000) Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J. Biol. Chem. 275, 38131-38134.   DOI
7 Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M. and Gutkind, J. S. (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310, 1504-1510.   DOI
8 Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37-40.   DOI
9 Chell, S. D., Witherden, I. R., Dobson, R. R., Moorghen, M., Herman, A. A., Qualtrough, D., Williams, A. C. and Paraskeva, C. (2006) Increased EP4 receptor expression in colorectal cancer progression promotes cell growth and anchorage independence. Cancer Res. 66, 3106-3113.   DOI
10 DeFea, K. A., Vaughn, Z. D., O'Bryan, E. M., Nishijima, D., Dery, O. and Bunnett, N. W. (2000) The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestindependent scaffolding complex. Proc. Natl. Acad. Sci. U.S.A. 97, 11086-11091.   DOI
11 Derijard, B., Raingeaud, J., Barrett, T., Wu, I. H., Han, J., Ulevitch, R. J. and Davis, R. J. (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267, 682-685.   DOI
12 Estrella, V. C., Eder, A. M., Liu, S., Pustilnik, T. B., Tabassam, F. H., Claret, F. X., Gallick, G. E., Mills, G. B. and Wiener, J. R. (2007) Lysophosphatidic acid induction of urokinase plasminogen activator secretion requires activation of the p38MAPK pathway. Int. J. Oncol. 31, 441-449.
13 Ge, B., Gram, H., Di Padova, F., Huang, B., New, L., Ulevitch, R. J., Luo, Y. and Han, J. (2002) MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295, 1291-1294.   DOI
14 Faour, W. H., He, Q., Mancini, A., Jovanovic, D., Antoniou, J. and Di Battista, J. A. (2006) Prostaglandin E2 stimulates p53 transactivational activity through specific serine 15 phosphorylation in human synovial fibroblasts. Role in suppression of c/EBP/NF-kappaBmediated MEKK1-induced MMP-1 expression. J. Biol. Chem. 281, 19849-19860.   DOI
15 Fujino, H., West, K. A. and Regan, J. W. (2002) Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. J. Biol. Chem. 277, 2614-2619.   DOI
16 Fujino, H., Xu, W. and Regan, J. W. (2003) Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. J. Biol. Chem. 278, 12151-12156.   DOI
17 Hanyaloglu, A. C. and Zastrow, M. V. (2008) Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537-568.   DOI
18 Honda, T., Segi-Nishida, E., Miyachi, Y. and Narumiya, S. (2006) Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. J. Exp. Med. 203, 325-335.   DOI
19 Hubbard, N. E., Lee, S., Lim, D. and Erickson, K. L. (2001) Differential mRNA expression of prostaglandin receptor subtypes in macrophage activation. Prostaglandins Leukot. Essent. Fatty Acids 65, 287-294.   DOI
20 Hunter, T. (1987) A tail of two src's: mutatis mutandis. Cell 49, 1-4.   DOI
21 Lefkowitz, R. J. and Whalen, E. J. (2004) beta-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16, 162-168.   DOI
22 Ikegami, R., Sugimoto, Y., Segi, E., Katsuyama, M., Karahashi, H., Amano, F., Maruyama, T., Yamane, H., Tsuchiya, S. and Ichikawa, A. (2001) The expression of prostaglandin E receptors EP2 and EP4 and their different regulation by lipopolysaccharide in C3H/HeN peritoneal macrophages. J. Immunol. 166, 4689-4696.   DOI
23 Katsuyama, M., Ikegami, R., Karahashi, H., Amano, F., Sugimoto, Y. and Ichikawa, A. (1998) Characterization of the LPS-stimulated expression of EP2 and EP4 prostaglandin E receptors in mouse macrophage-like cell line, J774.1. Biochem. Biophys. Res. Commun. 251, 727-731.   DOI
24 Kumar, S., Boehm, J. and Lee, J. C. (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717-726.   DOI
25 Luttrell, L. M., Ferguson, S. S., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J., Lin, F., Kawakatsu, H., Owada, K., Luttrell, D. K., Caron, M. G. and Lefkowitz, R. J. (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655-661.   DOI
26 Ma, Y. C. and Huang, X. Y. (2002) Novel signaling pathway through the beta-adrenergic receptor. Trends Cardiovasc. Med. 12, 46-49.   DOI
27 O'Hayre, M., Degese, M. S. and Gutkind, J. S. (2014) Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol. 27, 126-135.   DOI
28 Raingeaud, J., Whitmarsh, A. J., Barrett, T., Derijard, B. and Davis, R. J. (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell Biol. 16, 1247-1255.   DOI
29 Rouse, J., Cohen, P., Trigon, S., Morange, M., Alonso-Llamazares, A., Zamanillo, D., Hunt, T. and Nebreda, A. R. (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027-1037.   DOI
30 Regan, J. W. (2003) EP2 and EP4 prostanoid receptor signaling. Life Sci. 74, 143-153.   DOI
31 Salvador, J. M., Mittelstadt, P. R., Guszczynski, T., Copeland, T. D., Yamaguchi, H., Appella, E., Fornace, A. J., Jr. and Ashwell, J. D. (2005) Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat. Immunol. 6, 390-395.   DOI
32 Shenoy, S. K. and Lefkowitz, R. J. (2005) Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005, cm10.
33 Summy, J. M., Trevino, J. G., Baker, C. H. and Gallick, G. E. (2005) c-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK. Pancreas 31, 263-274.   DOI
34 Sun, Y., Huang, J., Xiang, Y., Bastepe, M., Juppner, H., Kobilka, B. K., Zhang, J. J. and Huang, X. Y. (2007a) Dosage-dependent switch from G protein-coupled to G protein-independent signaling by a GPCR. EMBO J. 26, 53-64.   DOI
35 Sun, Y., McGarrigle, D. and Huang, X. Y. (2007b) When a G proteincoupled receptor does not couple to a G protein. Mol. Biosyst. 3, 849-854.   DOI
36 Sung, Y. M., He, G., Hwang, D. H. and Fischer, S. M. (2006) Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development. Oncogene 25, 5507-5516.   DOI
37 Xi, X., Han, J. and Zhang, J. Z. (2001) Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-actiated protein kinase. J. Biol. Chem. 276, 41029-41034.   DOI
38 Tice, D. A., Biscardi, J. S., Nickles, A. L. and Parsons, S. J. (1999) Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc. Natl. Acad. Sci. U.S.A. 96, 1415-1420.   DOI
39 Uddin, S., Lekmine, F., Sharma, N., Majchrzak, B., Mayer, I., Young, P. R., Bokoch, G. M., Fish, E. N. and Platanias, L. C. (2000) The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon alpha-dependent transcriptional activation but not serine phosphorylation of Stat proteins. J. Biol. Chem. 275, 27634-27640.
40 Williams, J. A. (2001) Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Ann. Rev. Physiol. 63, 77-97.   DOI
41 Yin, G., Yan, C. and Berk, B. C. (2003) Angiotensin II signaling pathways mediated by tyrosine kinases. Int. J. Biochem. Cell Biol. 35, 780-783.   DOI
42 Yuan, J. and Rozengurt, E. (2008) PKD, PKD2, and p38 MAPK mediate Hsp27 serine-82 phosphorylation induced by neurotensin in pancreatic cancer PANC-1 cells. J. Cell. Biochem. 103, 648-662.   DOI
43 Zhang, L., Jiang, L., Sun, Q., Peng, T., Lou, K., Liu, N. and Leng, J. (2007) Prostaglandin E2 enhances mitogen-activated protein kinase/Erk pathway in human cholangiocarcinoma cells: involvement of EP1 receptor, calcium and EGF receptors signaling. Mol. Cell. Biochem. 305, 19-26.   DOI