DOI QR코드

DOI QR Code

β-arrestin Promotes c-Jun N-terminal Kinase Mediated Apoptosis via a GABABR·β-arrestin·JNK Signaling Module

  • Wu, Jin-Xia (The First Clinical Medical College, Nanjing Medical University) ;
  • Shan, Feng-Xiao (Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College) ;
  • Zheng, Jun-Nian (The First Clinical Medical College, Nanjing Medical University) ;
  • Pei, Dong-Sheng (The First Clinical Medical College, Nanjing Medical University)
  • Published : 2014.01.30

Abstract

Evidence is growing that the $GABA_B$ receptor, which belongs to the G protein-coupled receptor (GPCR) superfamily, is involved in tumorigenesis. Recent studies have shown that ${\beta}$-arrestin can serve as a scaffold to recruit signaling protein c-Jun N-terminal knase (JNK) to GPCR. Here we investigated whether ${\beta}$-arrestin recruits JNK to the $GABA_B$ receptor and facilitates its activation to affect the growth of cancer cells. Our results showed that ${\beta}$-arrestin expression is decreased in breast cancer cells in comparison with controls. ${\beta}$-arrestin could enhance interactions of the $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module in MCF-7 and T-47D cells. Further studies revealed that increased expression of ${\beta}$-arrestin enhances the phosphorylation of JNK and induces cancer cells apoptosis. Collectively, these results indicate that ${\beta}$-arrestin promotes JNK mediated apoptosis via a $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module.

Keywords

References

  1. Aoki H, Kang PM, Hampe J, et al (2002). Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem, 277, 10244-50. https://doi.org/10.1074/jbc.M112355200
  2. Benovic JL, Kuhn H, Weyand I, et al (1987). Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci U S A, 84, 8879-82. https://doi.org/10.1073/pnas.84.24.8879
  3. Bruchas MR, Macey TA, Lowe JD, et al (2006). Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestindependent in neurons and astrocytes. J Biol Chem, 281, 18081-9. https://doi.org/10.1074/jbc.M513640200
  4. Chebib M, Johnston GA (1999). The 'ABC' of GABA receptors: a brief review. Clin Exp Pharmacol Physiol, 26, 937-40. https://doi.org/10.1046/j.1440-1681.1999.03151.x
  5. Davis RJ (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103, 239-52. https://doi.org/10.1016/S0092-8674(00)00116-1
  6. DeFea KA, Vaughn ZD, O'Bryan EM, et al (2000a). The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex. Proc Natl Acad Sci U S A, 97, 11086-91. https://doi.org/10.1073/pnas.190276697
  7. DeFea KA, Zalevsky J, Thoma MS, et al (2000b). beta-arrestindependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol, 148, 1267-81. https://doi.org/10.1083/jcb.148.6.1267
  8. Derijard B, Hibi M, Wu IH, et al (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 76, 1025-37. https://doi.org/10.1016/0092-8674(94)90380-8
  9. Dhanasekaran DN, Kashef K, Lee CM, et al (2007). Scaffold proteins of MAP-kinase modules. Oncogene, 26, 3185-202. https://doi.org/10.1038/sj.onc.1210411
  10. Dhanasekaran DN, Reddy EP (2008). JNK signaling in apoptosis. Oncogene, 27, 6245-51. https://doi.org/10.1038/onc.2008.301
  11. Dhanasekaran N, Premkumar Reddy E (1998). Signaling by dual specificity kinases. Oncogene, 17, 1447-55. https://doi.org/10.1038/sj.onc.1202251
  12. Drell TL, Joseph J, Lang K, et al (2003). Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat, 80, 63-70. https://doi.org/10.1023/A:1024491219366
  13. Entschladen F, Lang K, Drell TL, et al (2002). Neurotransmitters are regulators for the migration of tumor cells and leukocytes. Cancer Immunol Immunother, 51, 467-82. https://doi.org/10.1007/s00262-002-0300-8
  14. Fan M, Chambers TC (2001). Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist Updat, 4, 253-67. https://doi.org/10.1054/drup.2001.0214
  15. Ferguson SS (2001). Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev, 53, 1-24.
  16. Gladkevich A, Korf J, Hakobyan VP (2006). The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci, 124, 1-8. https://doi.org/10.1016/j.autneu.2005.11.002
  17. Goodman OB, Jr, Krupnick JG, et al (1996). Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature, 383, 447-50. https://doi.org/10.1038/383447a0
  18. Gupta S, Barrett T, Whitmarsh AJ, et al (1996). Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J, 15, 2760-70.
  19. Hibi M, Lin A, Smeal T, et al (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev, 7, 2135-48. https://doi.org/10.1101/gad.7.11.2135
  20. Joseph J, Niggemann B, Zaenker KS, et al (2002). The neurotransmitter gamma-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res, 62, 6467-9.
  21. Krupnick JG, Goodman OB, Jr, Keen JH, Benovic JL (1997). Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J Biol Chem, 272, 15011-6. https://doi.org/10.1074/jbc.272.23.15011
  22. Laporte SA, Miller WE, Kim KM, Caron MG (2002). beta-Arrestin/AP-2 interaction in G protein-coupled receptor internalization: identification of a beta-arrestin binging site in beta 2-adaptin. J Biol Chem, 277, 9247-54. https://doi.org/10.1074/jbc.M108490200
  23. Lefkowitz RJ, Shenoy SK (2005). Transduction of receptor signals by beta-arrestins. Science, 308, 512-7. https://doi.org/10.1126/science.1109237
  24. Li J, Jia S, Zhang W, et al (2013). Survival Analysis Based on Clinicopathological Data from a Single Institution: Chemotherapy Intensity Would Be Enhanced in Patients with Positive Hormone Receptors and Positive HER2 in China Who Cannot Afford the Target Therapy. ISRN Oncol, 2013, 606398.
  25. Lin A (2003). Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays, 25, 17-24. https://doi.org/10.1002/bies.10204
  26. Lin A, Dibling B (2002). The true face of JNK activation in apoptosis. Aging Cell, 1, 112-6. https://doi.org/10.1046/j.1474-9728.2002.00014.x
  27. Liu J, Lin A (2005). Role of JNK activation in apoptosis: a double-edged sword. Cell Res, 15, 36-42. https://doi.org/10.1038/sj.cr.7290262
  28. Luttrell LM, Ferguson SS, Daaka Y, et al (1999). Beta-arrestindependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science, 283, 655-61. https://doi.org/10.1126/science.283.5402.655
  29. Luttrell LM, Roudabush FL, Choy EW, et al (2001). Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A, 98, 2449-54. https://doi.org/10.1073/pnas.041604898
  30. Ma L, Pei G (2007). Beta-arrestin signaling and regulation of transcription. J Cell Sci, 120, 213-8. https://doi.org/10.1242/jcs.03338
  31. McDonald PH, Chow CW, Miller WE, et al (2000). Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science, 290, 1574-7. https://doi.org/10.1126/science.290.5496.1574
  32. Pfister C, Chabre M, Plouet J, et al (1985). Retinal S antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Science, 228, 891-3. https://doi.org/10.1126/science.2988124
  33. Reiter E, Lefkowitz RJ (2006). GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab, 17, 159-65. https://doi.org/10.1016/j.tem.2006.03.008
  34. Rinkenberger, J. L., and Korsmeyer, S. J. (1997). Errors of homeostasis and deregulated apoptosis. Curr Opin Genet Dev, 7, 589-96. https://doi.org/10.1016/S0959-437X(97)80004-4
  35. Schuller, H. M., Al-Wadei, H. A., and Majidi, M. (2008). GABA B receptor is a novel drug target for pancreatic cancer. Cancer, 112, 767-78. https://doi.org/10.1002/cncr.23231
  36. Tatsuta, M., Iishi, H., Baba, M., and Taniguchi, H. (1992). Attenuation by the GABA receptor agonist baclofen of experimental carcinogenesis in rat colon by azoxymethane. Oncology, 49, 241-5. https://doi.org/10.1159/000227048
  37. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A., and Davis, R. J. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science, 288, 870-4. https://doi.org/10.1126/science.288.5467.870
  38. Wang, X., Song, Z. F., Xie, R. M., Pei, J., Xiang, M. F., and Wang, H. (2013). Analysis of death causes of in-patients with malignant tumors in Sichuan Cancer Hospital of China from 2002 to 2012. Asian Pac J Cancer Prev, 14, 4399-402. https://doi.org/10.7314/APJCP.2013.14.7.4399
  39. Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., and Hayasaki, H. (2002). GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol, 213, 1-47. https://doi.org/10.1016/S0074-7696(02)13011-7
  40. Wu, Z., Tong, W., Tan, Z., Wang, S., and Lin, P. (2011). [The clinical significance of beta-arrestin 2 expression in the serum of non-small cell lung cancer patients]. Zhongguo Fei Ai Za Zhi, 14, 497-501.
  41. Yuan, J., and Yankner, B. A. (2000). Apoptosis in the nervous system. Nature, 407, 802-9. https://doi.org/10.1038/35037739

Cited by

  1. Multifaceted role of β-arrestins in inflammation and disease vol.16, pp.8, 2015, https://doi.org/10.1038/gene.2015.37
  2. Emerging role of the Jun N-terminal kinase interactome in human health vol.42, pp.7, 2018, https://doi.org/10.1002/cbin.10948