Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.4.390

Atypical Actions of G Protein-Coupled Receptor Kinases  

Kurose, Hitoshi (Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University)
Publication Information
Biomolecules & Therapeutics / v.19, no.4, 2011 , pp. 390-397 More about this Journal
Abstract
G protein-coupled receptor kinases (GRKs) and ${\beta}$-arrestins have been known as regulators of G protein-coupled receptors. However, it has been recently reported that GRKs and ${\beta}$-arrestins mediate receptor-mediated cellular responses in a G proteinin-dependent manner. In this scheme, GRKs work as a mediator or a scaffold protein. Among 7 members of the GRK family (GRK1-GRK7), GRK2 is the most extensively studied in vitro and in vivo. GRK2 is involved in cellular migration, insulin signaling, and cardiovascular disease. GRK6 in concert with ${\beta}$-arrestin 2 mediates chemoattractant-stimulated chemotaxis of T and B lymphocytes. GRK5 shuttles between the cytosol and nucleus, and regulates the activities of transcription factors. GRK3 and GRK4 do not seem to have striking effects on cellular responses other than receptor regulation. GRK1 and GRK7 play specific roles in regulation of rhodopsin function. In this review, these newly discovered functions of GRKs are briefly described.
Keywords
G protein-coupled receptor kinase; Transcription factor; Desensitization; G protein-independent signaling;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Penela, P., Murga, C., Ribas, C., Lafarga, V. and Federico Mayor, F., Jr. (2010a) The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br. J. Pharmacol. 160, 821-832.   DOI   ScienceOn
2 Penela, P., Rivas, V., Salcedo, A. and Mayor, F., Jr. (2010b) G proteincoupled receptor kinase 2 (GRK2) modulation and cell cycle progression. Proc. Natl. Acad. Sci. USA. 107, 1118-1123.   DOI
3 Penela, P., Ribas, C., Aymerich, I., Eijkelkamp, N., Barreiro, O., Heijnen, C. J., Kavelaars, A., Sánchez-Madrid, F. and Mayor. F., Jr. (2008) G protein-coupled receptor kinase 2 positively regulates epithelial cell migration. EMBO J. 27, 1206-1218.   DOI
4 Penela, P., Ribas, C. and Mayor, F., Jr. (2003) Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal. 15, 973-981.   DOI
5 Premont, R. T. and Gainetdinov, R. R. (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu. Rev. Physiol. 69, 511-534.   DOI
6 Premont, R. T., Perry, S. J., Schmalzigaug, R., Roseman, J. T., Xing, Y. and Claing, A. (2004) The GIT/PIX complex: an oligomeric assembly of GIT family ARF GTPase-activating proteins and PIX family Rac1/Cdc42 guanine nucleotide exchange factors. Cell Signal. 16, 1001-1011.   DOI
7 Premont, R. T., Claing, A., Vitale, N., Freeman, J. L., Pitcher, J. A., Patton, W. A., Moss, J., Vaughan, M. and Lefkowitz, R. J. (1998) $\beta$2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA. 95, 14082-14087.   DOI
8 Pronin, A. N., Morris, A. J., Surguchov, A. and Benovic, J. L. (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J. Biol. Chem. 275, 26515-26522.   DOI
9 Martini, J. S., Raake, P., Vinge, L. E., DeGeorge, B. R. Jr., Chuprun J. K., Harris, D. M., Gao, E., Eckhart, A. D., Pitcher, J. A. and Koch, W. J. (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc. Natl. Acad. Sci. U S A. 105, 12457-12462.   DOI
10 Mayor, F., Jr., Lucas, E., Jurado-Pueyo, M., Garcia-Guerra, L., Nieto- Vazquez, I., Vila-Bedmar, R., Fernández-Veledo, S. and Murga, C. (2011) G Protein-coupled receptor kinase 2 (GRK2): a novel modulator of insulin resistance. Arch. Physiol. Biochem. 117, 125-130.   DOI
11 Meloni, A. R., Fralish, G. B., Kelly, P., Salahpour, A., Chen, J. K., Wechsler-Reya, R. J., Lefkowitz, R. J. and Caron, M. G. (2006) Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol. Cell Biol. 26, 7550-7560.   DOI
12 Molnar, C., Holguin, H., Mayor, F., Jr., Ruiz-Gomez, A. and de Celis, J. F. (2007) The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc. Natl. Acad. Sci. USA. 104, 7963-7968.   DOI
13 Noma, T., Lemaire, A., Naga Prasad, S. V., Barki-Harrington, L., Tilley, D. G., Chen, J., Le Corvoisier, P., Violin, J. D., Wei, H., Lefkowitz, R. J. and Rockman, H. A. (2007) $\beta$-Arrestin-mediated $\beta$1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J. Clin. Invest. 117, 2445-2458.   DOI
14 Pao, C. S., Barker, B. L. and Benovic, J. L. (2009) Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation. Biochemistry 48, 7325-7333.   DOI
15 Parameswaran, N., Pao, C. S., Leonhard, K. S., Kang, D. S., Kratz, M., Ley, S. C. and Benovic, J. L. (2006) Arrestin-2 and G proteincoupled receptor kinase 5 interact with NF${\kappa}B1$ p105 and negatively regulate lipopolysaccharide-stimulated ERK1/2 activation in macrophages. J. Biol. Chem. 281, 34159-34170.   DOI
16 Koch, W. J., Rockman, H. A., Samama, P., Hamilton, R. A., Bond, R. A., Milano, C. A., Lefkowitz, R. J. (1999) Cardiac function in mice overexpressing the $\beta$-adrenergic receptor kinase or a $\beta$ARK inhibitor. Science 268, 1350-1353.
17 Jimenez-Sainz, M. C., Murga, C., Kavelaars, A., Jurado-Pueyo, M., Krakstad, B. F., Heijnen, C. J., Mayor, F. Jr. and Aragay, A. M. (2006) G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. Mol. Biol. Cell 17, 25-31.
18 Kahsai, A. W., Zhu, S. and Fenteany, G. (2010) G protein-coupled receptor kinase 2 activates radixin, regulating membrane protrusion and motility in epithelial cells. Biochim. Biophys. Acta. 1803, 300-310.   DOI
19 Kawashima, S. and Yokoyama, M. (2004) Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 998-1005.   DOI
20 Kurnik, D., Cunningham, A. J., Sofowora, G. G., Kohli, U., Li, C., Friedman, E. A., Muszkat, M., Menon, U. B., Wood, A. J. J. and Stein, M. (2009) GRK5 Gln41Leu polymorphism is not associated with sensitivity to $\beta$1-adrenergic blockade in humans. Pharmacogenomics 10, 1581-1587.   DOI
21 Liggett, S. B., Cresci, S., Kelly, R. J., Syed, F. M., Matkovich, S. J., Hahn, H. S., Diwan, A., Martini, J. S., Sparks, L., Parekh, R. R., Spertus, J. A., Koch, W. J., Kardia, S. L. R. and Dorn, II, G. W. (2008) A GRK5 polymorphism that inhibits $\beta$-adrenergic receptor signaling is protective in heart failure. Nature Med. 14, 510-517.   DOI
22 Liu, J., Rasul, I., Sun, Y., Wu, G., Li, L., Premont, R. T. and Suo, W. Z. (2009) GRK5 defi ciency leads to reduced hippocampal acetylcholine level via impaired presynaptic M2/M4 autoreceptor desensitization. J. Biol. Chem. 284, 19564-19571.   DOI
23 Fong, A. M., Premont, R. T., Richardson, R. M., Yu, Y. R. A., Lefkowitz, R. J. and Patel, D. D. (2002) Defective lymphocyte chemotaxis in $\beta$-arrestin2- and GRK6-defi cient mice. Proc. Natl. Acd. Sci. USA. 99, 7478-7483.   DOI
24 Liu, S., Premont, R. T., Kontos, C. D., Zhu, S. and Rockey, D. C. (2005) A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat. Med. 11, 952-958.   DOI
25 Eichmann, T., Lorenz, K., Hoffmann, M., Brockmann, J., Krasel, C., Lohse, M. J. and Quitterer, U. (2003) The amino-terminal domain of G-protein-coupled receptor kinase 2 is a regulatory G${\beta}{\gamma}$ binding site. J. Biol. Chem. 278, 8052-8057.   DOI
26 Fernandez, N., Gottardo, F. L., Alonso, M. N., Monczor, F., Shayo, C. and Davio, C. (2011) Roles of phosphorylation-dependent and -independent mechanisms in the regulation of histamine H2 receptor by G protein-coupled receptor kinase 2. J. Biol. Chem. 286, 28697-28706.   DOI
27 Frank, S. R. and Hansen, S. H. (2008) The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin. Cell Dev. Biol. 19, 234-244.   DOI
28 Gainetdinov, R. R., Bohn, L. M., Walker, J. K., Laporte, S. A., Macrae, A. D., Caron, M. G., Lefkowitz, R. J. and Premont, R. T. (1999) Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-defi cient mice. Neuron 24, 1029-1036.   DOI
29 Gordon, J. W., Shaw, J. A. and Kirshenbaum, L. A. (2011) Multiple facets of NF-${\kappa}B$ in the heart: to be or not to NF-${\kappa}B$. Circ. Res. 108, 1122-1132.   DOI
30 Hoefen, R. J. and Berk, B. C. (2006) The multifunctional GIT family of proteins. J. Cell Sci. 119, 1469-1475.   DOI
31 Ciaccarelli, M., Chuprun, J. K., Rengo, G., Gao, E., Wei, Z., Peroutka, R. J., Gold, J. I., Gumpert, A., Chen, M., Otis, N. J., Dorn II, G. W., Trimarco, B., Iaccarino, G. and Koch, W. J. (2011) G proteincoupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation 123, 1953-1962.   DOI
32 Hughes, S. C. and Fehon, R. G. (2007) Understanding ERM proteins - the awesome power of genetics fi nally brought to bear. Curr. Opin. Cell Biol. 19, 51-56.   DOI
33 Iino, M., Furugori, T., Mori, T., Moriyama, S., Fukuzawa, A. and Shibano, T. (2002) Rational design and evaluation of new lead compound structures for selective $\beta$ARK1 inhibitors. J. Med. Chem. 45, 2150-2159.   DOI
34 Cheng, S., Li, L., He, S., Liu, J., Sun, Y., He, M., Grasing, K., Premont, R. T. and Suo, W. Z. (2010) GRK5 defi ciency accelerates $\beta$-amyloid accumulation in Tg2576 mice via impaired cholinergic activity. J. Biol. Chem. 285, 41541-41548.   DOI
35 Cipolletta, E., Campanile, A., Santulli, G., Sanzari, E., Leosco, D., Campiglia, P., Trimarco, B. and Guido Iaccarino, G. (2009) The G protein coupled receptor kinase 2 plays an essential role in betaadrenergic receptor-induced insulin resistance. Cardiovasc. Res. 84, 407-415.   DOI
36 Claing, A., Perry, S. J., Achiriloaie, M., Walker, J. K., Albanesi, J. P., Lefkowitz, R. J. and Premont, R. T. (2000) Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc. Natl. Acad. Sci. USA. 97, 1119-1124.   DOI
37 Craig, L. A., Hong, N. S. and McDonald, R. J. (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci. Biobehav. Rev. 35, 1397-1409.   DOI
38 Dawson, T. M. and Dawson, V. L. (2003) Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819-822.   DOI   ScienceOn
39 Hoefen, R. J. and Berk, B. C. (2006) The multifunctional GIT family of proteins. J. Cell Science 119, 1469-1475.   DOI
40 Dorn, G. W., II. (2010) Adrenergic signaling polymorphisms and their impact on cardiovascular disease. Physiol. Rev. 90, 1013-1062.   DOI
41 Eckhart, A. D., Duncan, S. J., Penn, R. B., Benovic, J. L., Lefkowitz, R. J. and Koch, W. J. (2000) Hybrid transgenic mice reveal in vivo specifi city of G protein-coupled receptor kinases in the heart. Circ. Res. 86: 43-50.   DOI   ScienceOn
42 Brinks, H., Boucher, M., Gao, E., Chuprun, J. K., Pesant, S., Raake, P. W., Huang, Z. M., Wang, X., Qiu, G., Gumpert, A., Harris, D. M., Eckhart, A. D., Most, P. and Koch, W. J. (2010) Level of G proteincoupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms. Circ. Res. 107,1140-1149.   DOI
43 Cadigan, K. M. and Liu, Y. I. (2006) Wnt signaling: complexity at the surface. J. Cell Sci. 119, 395-402.   DOI
44 Cant, S. H. and Pitcher, J. A. (2005) G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol. Biol. Cell 16, 3088-3099.   DOI
45 Carman, C. V., Parent, J. L., Day, P. W., Pronin, A. N., Sternweis, P. M., Wedegaertner, P. B., Gilman, A. G., Benovic, J. L. and Tohru Kozasa, T. (1999) Selective regulation of Gαq/11 by an RGS domain in the G Protein-coupled receptor kinase, GRK2. J. Biol. Chem. 274, 34483-34492.   DOI
46 Chen, L. and Feany, M. B. (2005) $\alpha$-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat. Neurosci. 8, 657-663.   DOI
47 Aiyar, N., Disa, J., Dang, K., Pronin, A. N., Benovic, J. L. and Nambi, P. (2000) Involvement of G protein-coupled receptor kinase-6 in desensitization of CGRP receptors. Eur. J. Pharmacol. 403, 1-7.   DOI
48 Chen, M., Philipp, M., Wang, J., Premont, R. T., Garrison, T. R., Caron, M. G., Lefkowitz, R. J. and Chen, W. (2009) G protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J. Biol. Chem. 284, 35040-35048.   DOI   ScienceOn
49 Chen, W., Ren, X. R., Nelson, C. D., Barak, L. S., Chen, J. K., Beachy, P. A., de Sauvage, F. and Lefkowitz, R. J. (2004) Activity-dependent internalization of smoothened mediated by $\beta$-arrestin 2 and GRK2. Science 306, 2257-2260.   DOI
50 Chen, X., Zhu, H., Yuan, M., Fu, J., Zhou, Y. and Ma, L. (2010) Gprotein- coupled receptor kinase 5 phosphorylates p53 and inhibits DNA damage-induced apoptosis. J. Biol. Chem. 285, 12823-12830.   DOI
51 Anis, Y., Leshem, O., Reuveni, H., Wexler, I., Ben Sasson, R., Yahalom, B., Laster, M., Raz, I., Ben Sasson, S., Shafrir, E. and Ziv, E. (2004) Antidiabetic effect of novel modulating peptides of G-protein- coupled kinase in experimental models of diabetes. Diabetologia 47, 1232-1244.
52 Benovic, J. L., Onorato, J., Lohse, M. J., Dohlman, H. G., Staniszewski, C., Caron, M. G. and Lefkowitz, R. J. (1990) Synthetic peptides of the hamster β2-adrenoceptor as substrates and inhibitors of the β-adrenoceptor kinase. Br. J. Clin. Pharmacol. 30, 3S-12S.   DOI
53 Arawaka, S., Wada, M., Goto, S., Karube, H., Sakamoto, M., Ren, C. H., Koyama, S., Nagasawa, H., Kimura, H., Kawanami, T., Kurita, K., Tajima, K., Daimon, M., Baba, M., Kido, T., Saino, S., Goto, K., Asao, H., Kitanaka, C., Takashita, E., Hongo, S., Nakamura, T., Kayama, T., Suzuki, Y., Kobayashi, K., Katagiri, T., Kurokawa, K., Kurimura, M., Toyoshima, I., Niizato, K., Tsuchiya, K., Iwatsubo, T., Muramatsu, M., Matsumine, H. and Kato, T. (2006) The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson's disease. J. Neurosci. 26, 9227-9238.   DOI
54 Barthet, G., Carrat, G., Cassier, E., Barker, B., Gaven, F., Pillot, M., Framery, B., Pellissier, L. P., Augier, J., Kang, D. S., Claeysen, S., Reiter, E., Banères, J. L., Benovic, J. L., Marin, P., Bockaert, J. and Dumuis, A. (2009) $\beta$-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling. EMBO J. 28, 2706-2718.   DOI
55 Belmonte, S. L. and Blaxall, B. C. (2011) G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circ. Res. 109, 309-319.   DOI
56 Whalen, E. J., Rajagopal, S. and Lefkowitz, R. J. (2011) Therapeutic potential of $\beta$-arrestin- and G protein-biased agonists. Tends. Mol. Med. 17, 126-139.   DOI
57 Tesmer, J. J., Tesmer, V. M., Lodowski, D. T., Steinhagen, H. and Huber, J. (2010) Structure of human G protein-coupled receptor kinase 2 in complex with the kinase inhibitor balanol. J. Med. Chem. 53, 1867-1870.   DOI
58 Thal, D. M., Yeow, R. Y., Schoenau, C., Huber, J. and Tesmer, J. J. (2011) Molecular, mechanism of selectivity among G protein-coupled receptor kinase 2 inhibitors. Mol. Pharmacol. 80, 294-303.   DOI
59 Vazquez, A., Bond, E. E., Levine, A. J. and Bond, G. L. (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nature Rev. Drug Discov. 7, 979-987.   DOI
60 Walker, J. K., Gainetdinov, R. R., Feldman, D. S., McFawn, P. K., Caron, M. G., Lefkowitz, R. J., Premont, R. T. and Fisher, J. T. (2004) G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am. J. Physiol. Lung Cell Mol. Physiol. 286, L312-319.   DOI
61 Wilke, R. A., Reif, D. M. and Moore, J. H. (2005) Combinatorial pharmacogenetics. Nat. Rev. Drug Discov. 4, 911-918.   DOI
62 Willets, J. M., Challiss, R. A. J. and Nahorski, S. R. (2003) Non-visual GRKs: are we seeing the whole picture? Trends Pharmacol. Sci. 24, 626-633.   DOI
63 Winstel, R., Ihlenfeldt, H. G., Jung, G., Krasel, C. and Lohse, M. J. (2005) Peptide inhibitors of G protein-coupled receptor kinases. Biochem. Pharmacol. 70, 1001-1008.   DOI
64 Zhang, P. and Mende, U. (2011) Regulators of G-protein signaling in the heart and their potential as therapeutic targets. Circ. Res. 109, 320-333.   DOI
65 Puca, R., Nardinocchi, L., Givol, D. and D'Orazi, G. (2010) Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 29, 4378-4387.   DOI
66 Setyawan, J., Koide, K., Diller, T. C., Bunnage, M. E., Taylor, S. S., Nicolaou, K. C. and Brunton, L. L. (1999) Inhibition of protein kinases by balanol: specifi city within the serine/threonine protein kinase subfamily. Mol. Pharmacol. 56, 370-376.
67 Rockman, H. A., Koch, W. J. and Lefkowitz, R. J. (2002) Seven-transmembrane- spanning receptors and heart function. Nature 415, 206-212.   DOI
68 Rockman, H. A., Choi, D. J., Rahman, N. U., Akhter, S. A., Lefkowitz, R. J. and Koch, W. J. (1996) Receptor-specifi c in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc. Natl. Acad. Sci. USA. 93, 9954-9959.   DOI
69 Scott, J. D. and Pawson, T. (2009) Cell signaling in space and time: where proteins come together and when they're apart. Science 326, 1220-1224.   DOI
70 Sorriento, D., Ciccarelli, M., Santulli, G., Campanile, A., Altobelli, G. G., Cimini, V., Galasso, G., Astone, D., Piscione, F., Pastore, L., Trimarco, B. and Iaccarino, G. (2008) The G-protein-coupled receptor kinase 5 inhibits NF${\kappa}B$ transcriptional activity by inducing nuclear accumulation of $l{\kappa}B{\alpha}$. Proc. Natl. Acad. Sci. USA. 105, 17818-17823.   DOI
71 Tarantino, P., De Marco, E. V., Annesi, G., Rocca, F. E., Annesi, F., Civitelli, D., Provenzano, G., Scornaienchi, V., Greco, V., Colica, C., Nicoletti, G. and Quattrone, A. (2011) Lack of association between G-protein coupled receptor kinase 5 gene and Parkinson's disease. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156B, 104-107.
72 Terry, A. V. Jr. and Buccafusco, J. J. (2003) The cholinergic hypothesis of age and Alzheimer's disease-related cognitive defi cits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306, 821-827.   DOI