DOI QR코드

DOI QR Code

Roles of Dopamine D2 Receptor Subregions in Interactions with β-Arrestin2

  • Zhang, Xiaohan (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Choi, Bo-Gil (Medicinal Chemistry Laboratory, College of Pharmacy, Chonnam National University) ;
  • Kim, Kyeong-Man (Pharmacology Laboratory, College of Pharmacy, Chonnam National University)
  • Received : 2015.12.08
  • Accepted : 2016.01.05
  • Published : 2016.09.01

Abstract

${\beta}$-Arrestins are one of the protein families that interact with G protein-coupled receptors (GPCRs). The roles of ${\beta}$-arrestins are multifaceted, as they mediate different processes including receptor desensitization, endocytosis, and G protein-independent signaling. Thus, determining the GPCR regions involved in the interactions with ${\beta}$-arrestins would be a preliminary step in understanding the molecular mechanisms involved in the selective direction of each function. In the current study, we determined the roles of the N-terminus, intracellular loops, and C-terminal tail of a representative GPCR in the interaction with ${\beta}$-arrestin2. For this, we employed dopamine $D_2$ and $D_3$ receptors ($D_2R$ and $D_3R$, respectively), since they display distinct agonist-induced interactions with ${\beta}$-arrestins. Our results showed that the second and third intracellular loops of $D_2R$ are involved in the agonist-induced translocation of ${\beta}$-arrestins toward plasma membranes. In contrast, the N- and C-termini of $D_2R$ exerted negative effects on the basal interaction with ${\beta}$-arrestins.

Keywords

References

  1. Ahn, S., Nelson, C. D., Garrison, T. R., Miller, W. E. and Lefkowitz, R. J. (2003) Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc. Natl. Acad. Sci. U.S.A. 100, 1740-1744. https://doi.org/10.1073/pnas.262789099
  2. Ahn, S., Shenoy, S. K., Wei, H. and Lefkowitz, R. J. (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem. 279, 35518-35525. https://doi.org/10.1074/jbc.M405878200
  3. Barak, L. S., Ferguson, S. S., Zhang, J. and Caron, M. G. (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J. Biol. Chem. 272, 27497-27500. https://doi.org/10.1074/jbc.272.44.27497
  4. Bockaert, J. and Pin, J. P. (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723-1729. https://doi.org/10.1093/emboj/18.7.1723
  5. Chien, E. Y., Liu, W., Zhao, Q., Katritch, V., Han, G. W., Hanson, M. A., Shi, L., Newman, A. H., Javitch, J. A., Cherezov, V. and Stevens, R. C. (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091-1095. https://doi.org/10.1126/science.1197410
  6. Cho, D., Zheng, M., Min, C., Ma, L., Kurose, H., Park, J. H. and Kim, K. M. (2010a) Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine D(2) receptors. Mol. Endocrinol. 24, 574-586. https://doi.org/10.1210/me.2009-0369
  7. Cho, D. I., Zheng, M. and Kim, K. M. (2010b) Current perspectives on the selective regulation of dopamine $D_2$ and $D_3$ receptors. Arch. Pharm. Res. 33, 1521-1538. https://doi.org/10.1007/s12272-010-1005-8
  8. Cho, E. Y., Cho, D. I., Park, J. H., Kurose, H., Caron, M. G. and Kim, K. M. (2007) Roles of protein kinase C and actin-binding protein 280 in the regulation of intracellular trafficking of dopamine D3 receptor. Mol. Endocrinol. 21, 2242-2254. https://doi.org/10.1210/me.2007-0202
  9. Ferguson, S. S., Downey, W. E., 3rd, Colapietro, A. M., Barak, L. S., Menard, L. and Caron, M. G. (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363-366. https://doi.org/10.1126/science.271.5247.363
  10. Goodman, O. B., Jr., Krupnick, J. G., Santini, F., Gurevich, V. V., Penn, R. B., Gagnon, A. W., Keen, J. H. and Benovic, J. L. (1996) Betaarrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383, 447-450. https://doi.org/10.1038/383447a0
  11. Kim, K. M., Valenzano, K. J., Robinson, S. R., Yao, W. D., Barak, L. S. and Caron, M. G. (2001) Differential Regulation of the Dopamine D2 and D3 Receptors by G Protein-coupled Receptor Kinases and beta -Arrestins. J. Biol. Chem. 276, 37409-37414. https://doi.org/10.1074/jbc.M106728200
  12. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. and Lefkowitz, R. J. (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248, 1547-1550. https://doi.org/10.1126/science.2163110
  13. Lohse, M. J., Andexinger, S., Pitcher, J., Trukawinski, S., Codina, J., Faure, J. P., Caron, M. G. and Lefkowitz, R. J. (1992) Receptorspecific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J. Biol. Chem. 267, 8558-8564.
  14. Oakley, R. H., Laporte, S. A., Holt, J. A., Caron, M. G. and Barak, L. S. (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201-17210. https://doi.org/10.1074/jbc.M910348199
  15. Ostrowski, J., Kjelsberg, M. A., Caron, M. G. and Lefkowitz, R. J. (1992) Mutagenesis of the beta 2-adrenergic receptor: how structure elucidates function. Annu. Rev. Pharmacol. Toxicol. 32, 167-183. https://doi.org/10.1146/annurev.pa.32.040192.001123
  16. Pitcher, J. A., Inglese, J., Higgins, J. B., Arriza, J. L., Casey, P. J., Kim C., Benovic, J. L., Kwatra, M. M., Caron, M. G. and Lefkowitz, R. J. (1992) Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264-1267. https://doi.org/10.1126/science.1325672
  17. Robinson, S. W. and Caron, M. G. (1996) Chimeric D2/D3 dopamine receptors efficiently inhibit adenylyl cyclase in HEK 293 cells. J. Neurochem. 67, 212-219.
  18. Robinson, S. W. and Caron, M. G. (1997) Selective inhibition of adenylyl cyclase type V by the dopamine D3 receptor. Mol. Pharmacol. 52, 508-514. https://doi.org/10.1124/mol.52.3.508
  19. Thomas, M. J., Kalivas, P. W. and Shaham, Y. (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol. 154, 327-342.
  20. Zheng, M., Cheong, S. Y., Min, C., Jin, M., Cho, D. I. and Kim, K. M. (2011) ${\beta}$-arrestin2 plays permissive roles in the inhibitory activities of RGS9-2 on G protein-coupled receptors by maintaining RGS9-2 in the open conformation. Mol. Cell. Biol. 31, 4887-4901. https://doi.org/10.1128/MCB.05690-11

Cited by

  1. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis vol.25, pp.1, 2017, https://doi.org/10.4062/biomolther.2016.186
  2. Palmitoylation on the carboxyl terminus tail is required for the selective regulation of dopamine D 2 versus D 3 receptors vol.1858, pp.9, 2016, https://doi.org/10.1016/j.bbamem.2016.06.021
  3. Molecular dynamics simulation of biased agonists at the dopamine D2 receptor suggests the mechanism of receptor functional selectivity pp.1538-0254, 2018, https://doi.org/10.1080/07391102.2018.1513378
  4. Comprehensive Analysis of Non-Synonymous Natural Variants of G Protein-Coupled Receptors vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2017.073
  5. An Integrative Approach to Treat Parkinson's Disease: Ukgansan Complements L-Dopa by Ameliorating Dopaminergic Neuronal Damage and L-Dopa-Induced Dyskinesia in Mice vol.10, pp.1663-4365, 2019, https://doi.org/10.3389/fnagi.2018.00431