• 제목/요약/키워드: Bergman spaces

검색결과 74건 처리시간 0.02초

LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES

  • Nam, Kyesook
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1277-1288
    • /
    • 2013
  • Wulan and Zhu [16] have characterized the weighted Bergman space in the setting of the unit ball of $C^n$ in terms of Lipschitz type conditions in three different metrics. In this paper, we study characterizations of the harmonic Bergman space on the upper half-space in $R^n$. Furthermore, we extend harmonic analogues in the setting of the unit ball to the full range 0 < p < ${\infty}$. In addition, we provide the application of characterizations to showing the boundedness of a mapping defined by a difference quotient of harmonic function.

ZEROS OF NEW BERGMAN KERNELS

  • Ghiloufi, Noureddine;Snoun, Safa
    • 대한수학회지
    • /
    • 제59권3호
    • /
    • pp.449-468
    • /
    • 2022
  • In this paper we determine explicitly the kernels 𝕜α,β associated with new Bergman spaces A2α,β(𝔻) considered recently by the first author and M. Zaway. Then we study the distribution of the zeros of these kernels essentially when α ∈ ℕ where the zeros are given by the zeros of a real polynomial Qα,β. Some numerical results are given throughout the paper.

A CHARACTERIZATION OF WEIGHTED BERGMAN-PRIVALOV SPACES ON THE UNIT BALL OF Cn

  • Matsugu, Yasuo;Miyazawa, Jun;Ueki, Sei-Ichiro
    • 대한수학회지
    • /
    • 제39권5호
    • /
    • pp.783-800
    • /
    • 2002
  • Let B denote the unit ball in $C^n$, and ν the normalized Lebesgue measure on B. For $\alpha$ > -1, define $dv_\alpha$(z) = $c_\alpha$$(1-\midz\mid^2)^{\alpha}$dν(z), z $\in$ B. Here $c_\alpha$ is a positive constant such that $v_\alpha$(B) = 1. Let H(B) denote the space of all holomorphic functions in B. For $p\geq1$, define the Bergman-Privalov space $(AN)^{p}(v_\alpha)$ by $(AN)^{p}(v_\alpha)$ = ${f\inH(B)$ : $\int_B{log(1+\midf\mid)}^pdv_\alpha\;<\;\infty}$ In this paper we prove that a function $f\inH(B)$ is in $(AN)^{p}$$(v_\alpha)$ if and only if $(1+\midf\mid)^{-2}{log(1+\midf\mid)}^{p-2}\mid\nablaf\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case 1<p<$\infty$, or $(1+\midf\mid)^{-2}\midf\mid^{-1}\mid{\nabla}f\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case p = 1, where $nabla$f is the gradient of f with respect to the Bergman metric on B. This is an analogous result to the characterization of the Hardy spaces by M. Stoll [18] and that of the Bergman spaces by C. Ouyang-W. Yang-R. Zhao [13].

BOUNDED, COMPACT AND SCHATTEN CLASS WEIGHTED COMPOSITION OPERATORS BETWEEN WEIGHTED BERGMAN SPACES

  • Wolf, Elke
    • 대한수학회논문집
    • /
    • 제26권3호
    • /
    • pp.455-462
    • /
    • 2011
  • An analytic self-map ${\phi}$ of the open unit disk $\mathbb{D}$ in the complex plane and an analytic map ${\psi}$ on $\mathbb{D}$ induce the so-called weighted composition operator $C_{{\phi},{\psi}}$: $H(\mathbb{D})\;{\rightarrow}\;H(\mathbb{D})$, $f{\mapsto} \;{\psi}\;(f\;o\;{\phi})$, where H($\mathbb{D}$) denotes the set of all analytic functions on $\mathbb{D}$. We study when such an operator acting between different weighted Bergman spaces is bounded, compact and Schatten class.