• 제목/요약/키워드: Bergman spaces

검색결과 76건 처리시간 0.019초

SCHATTEN CLASSES OF COMPOSITION OPERATORS ON DIRICHLET TYPE SPACES WITH SUPERHARMONIC WEIGHTS

  • Zuoling Liu
    • 대한수학회보
    • /
    • 제61권4호
    • /
    • pp.875-895
    • /
    • 2024
  • In this paper, we completely characterize the Schatten classes of composition operators on the Dirichlet type spaces with superharmonic weights. Our investigation is basced on building a bridge between the Schatten classes of composition operators on the weighted Dirichlet type spaces and Toeplitz operators on weighted Bergman spaces.

LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES

  • Nam, Kyesook
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1277-1288
    • /
    • 2013
  • Wulan and Zhu [16] have characterized the weighted Bergman space in the setting of the unit ball of $C^n$ in terms of Lipschitz type conditions in three different metrics. In this paper, we study characterizations of the harmonic Bergman space on the upper half-space in $R^n$. Furthermore, we extend harmonic analogues in the setting of the unit ball to the full range 0 < p < ${\infty}$. In addition, we provide the application of characterizations to showing the boundedness of a mapping defined by a difference quotient of harmonic function.

ZEROS OF NEW BERGMAN KERNELS

  • Ghiloufi, Noureddine;Snoun, Safa
    • 대한수학회지
    • /
    • 제59권3호
    • /
    • pp.449-468
    • /
    • 2022
  • In this paper we determine explicitly the kernels 𝕜α,β associated with new Bergman spaces A2α,β(𝔻) considered recently by the first author and M. Zaway. Then we study the distribution of the zeros of these kernels essentially when α ∈ ℕ where the zeros are given by the zeros of a real polynomial Qα,β. Some numerical results are given throughout the paper.

A CHARACTERIZATION OF WEIGHTED BERGMAN-PRIVALOV SPACES ON THE UNIT BALL OF Cn

  • Matsugu, Yasuo;Miyazawa, Jun;Ueki, Sei-Ichiro
    • 대한수학회지
    • /
    • 제39권5호
    • /
    • pp.783-800
    • /
    • 2002
  • Let B denote the unit ball in $C^n$, and ν the normalized Lebesgue measure on B. For $\alpha$ > -1, define $dv_\alpha$(z) = $c_\alpha$$(1-\midz\mid^2)^{\alpha}$dν(z), z $\in$ B. Here $c_\alpha$ is a positive constant such that $v_\alpha$(B) = 1. Let H(B) denote the space of all holomorphic functions in B. For $p\geq1$, define the Bergman-Privalov space $(AN)^{p}(v_\alpha)$ by $(AN)^{p}(v_\alpha)$ = ${f\inH(B)$ : $\int_B{log(1+\midf\mid)}^pdv_\alpha\;<\;\infty}$ In this paper we prove that a function $f\inH(B)$ is in $(AN)^{p}$$(v_\alpha)$ if and only if $(1+\midf\mid)^{-2}{log(1+\midf\mid)}^{p-2}\mid\nablaf\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case 1<p<$\infty$, or $(1+\midf\mid)^{-2}\midf\mid^{-1}\mid{\nabla}f\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case p = 1, where $nabla$f is the gradient of f with respect to the Bergman metric on B. This is an analogous result to the characterization of the Hardy spaces by M. Stoll [18] and that of the Bergman spaces by C. Ouyang-W. Yang-R. Zhao [13].