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VOLUME INTEGRAL MEANS OF HARMONIC FUNCTIONS

ON SMOOTH BOUNDARY DOMAINS

Kyesook Nam and Inyoung Park

Abstract. We newly define the volume integral means of harmonic func-
tions to characterize the weighted harmonic Bergman spaces. It is based
on Xiao and Zhu’s results on holomorphic Bergman spaces [5].

1. Introduction

Let Ω be a bounded domain with C∞-boundary in Rn. For x ∈ Ω, let
r(x) := dist(x, ∂Ω). For ǫ > 0, we define

Ωǫ = {y ∈ Ω : r(y) > ǫ}.

Due to the smoothness of the boundary ∂Ω there exists ǫ > 0 only depending
on the shape of the region Ω such that the projection map π : Ω \ Ωǫ → ∂Ω
is well defined and smooth. Additionally, for 0 ≤ r ≤ ǫ, the restriction of the
projection map π|∂Ωr

: Ω\Ωǫ → ∂Ω is one to one and onto, and for all η ∈ ∂Ωr

can be written as

η = π(η) + rnπ(η),(1.1)

where nζ denotes the inward unit normal to ∂Ω at ζ ∈ ∂Ω. Furthermore, for
all 0 ≤ r ≤ ǫ and for nonnegative continuous functions f on Ωr \ Ωǫ,

∫

Ωr\Ωǫ

f(x)dV (x) ≈

∫

∂Ω

∫ ǫ

r

f(ζ + snζ)dsdS(ζ),(1.2)

where dV denotes the Lebesque measure on Ω and dS denotes the surface
area measure on ∂Ω. Throughout our paper, ǫ denotes a positive real value
satisfying conditions we stated above and the subset Dr is defined as

Dr := Ωr \ Ωǫ, 0 ≤ r ≤ ǫ.
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Especially, D := Ω \ Ωǫ.
For α > −1, 1 < p < ∞, the weighted harmonic Bergman space bpα = bpα(Ω)

is the set of all complex-valued harmonic functions f on Ω such that
∫

Ω

|f(x)|pdVα(x) < ∞,

where dVα(x) = rα(x)dV (x). Since |f |p is subharmonic on Ω, the maximum
principle allows us to define another norm of p-harmonic Bergman space,

‖f‖pp,α :=

∫

D

|f(x)|pdvα(x)

:= cα,ǫ

∫

∂Ω

∫ ǫ

0

|f(ζ + snζ)|
psαdsdσ(ζ) < ∞,(1.3)

where dσ is normalized measure σ(∂Ω) = 1 and cα,ǫ = (α+1)/ǫα+1 so that we
normalized the measure dvα.

For α = −1, bp−1 = hp(Ω) denote the p-harmonic Hardy space and by the
maximum modulus theorem it is natural that we define the norm of f in hp(Ω)
as

‖f‖pp := sup
0<r<ǫ

∫

∂Ω

|f(ζ + rnζ)|
pdσ(ζ) < ∞.

In this paper, we are going to extend the results of volume integral means of
holomorphic functions in [5] to those of harmonic Bergman functions in general
bounded smooth domains in Rn. In [5] Xiao and Zhu define the volume integral
means of the holomorphic function f in the unit ball Bn in Cn such that

Mp,α(f, r) =

[

1

Vα(rBn)

∫

rBn

|f(z)|pdVα(z)

]1/p

, 0 ≤ r < 1,(1.4)

where dVα is the weighted volume measure onBn. They showed thatMp,α(f, r)
is strictly increasing as a function of r ∈ [0, 1) and they characterized Hardy
and Bergman spaces using Mp,α(f, r) as an application. Now, we introduce
the volume mean integral on smooth boundary domains. Let f be a harmonic
function on Ω in Rn. For 1 < p < ∞, the integral means of f are defined by

Mp
p (f, r) =

∫

∂Ω

|f(ζ + rnζ)|
pdσ(ζ), 0 < r ≤ ǫ.

When p = ∞, we define

M∞(f, r) = sup
ζ∈∂Ω

{|f(x)| : x = ζ + rnζ , 0 < r ≤ ǫ}.

Let α be any real number. The volume mean integral of f is defined by

Mp
p,α(f, r) =

1

vα(Dr)

∫

Dr

|f(x)|pdvα(x), 0 ≤ r ≤ ǫ.

Now, we will state our results analogue to the holomorphic version.
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Theorem 1.1. Let Ω be a bounded domain with C∞-boundary in Rn. Suppose

f is a non-constant harmonic function in Ω. Then for given 1 < p ≤ ∞,

α ∈ R, Mp,α(f, r) is strictly increasing when r tends to 0.

With properties of Mp,α(f, r) in Theorem 1.1, we characterize the harmonic
Bergman spaces and the harmonic hardy spaces in smooth boundary domains
in Rn.

Theorem 1.2. Let Ω be a bounded domain with C∞-boundary in Rn. Suppose

p > 1 and f is a harmonic function on Ω and there exists ǫ > 0 satisfying

conditions (1.1) and (1.2).

(a) If α > −1, then

sup{Mp,α(f, r) : 0 < r ≤ ǫ} = ‖f‖p,α.

(b) If α ≤ −1, then

sup{Mp,α(f, r) : 0 < r ≤ ǫ} = ‖f‖p.

In Section 2 we present some backgrounds and the proposition that we need
and in Section 3, we prove our main results. In the last section we will introduce
another kind of the volume mean integral on the upper half space in Rn and
also show that it has the same properties with the case of smooth boundary
domains.

Notation. In the rest of the paper, we use the notation A . B to mean A ≤ CB
for some positive real number C and A ≈ B if A . B . A.

2. Backgrounds

In this section we present some basic facts which we need to prove our results.

2.1. Bounded smooth domains

It is easy to show that ∂Ωr is also smooth for any 0 < r ≤ ǫ. For each
η ∈ ∂Ωr, we will find a neighborhood Uη and a real-valued function f defined
on Uη such that

(1) f(x) = 0 on ∂Ωr ∩ Uη,
(2) f(x) < 0 on Ωr ∩ Uη,
(3) ∇f(x) 6= 0 on ∂Ωr ∩ Uη.

We know that projection π : D → ∂Ω is well-defined and smooth. Since ∂Ω
is smooth there exist a neighborhood Uπ(η) for η ∈ D and defining function φ

satisfying above (1), (2), and (3) on Ω ∩ Uπ(η). Now, for fixed r ∈ (0, ǫ] and

η on ∂Ωr, we consider the translation t(x) := x + rnπ(η) for x ∈ Ω ∩ Uπ(η).

Then we can easily check t(Ω ∩ Uπ(η)) = Ωr ∩ Uη is one to one and onto and

φ◦t−1 : Ωr∩Uη → R satisfied (1), (2) and (3). We refer to [2] for the geometric
backgrounds of domains with smooth boundaries.
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Proposition 2.1. Let f be a continuous function on Ω. Then for fixed 0 <
r < ǫ, there exist constants C1, C2 > 0 depending only on ǫ such that

C1

∫

∂Ω

f(ζ + rnζ)dS(ζ) ≤

∫

∂Ωr

f(η)dS(η) ≤ C2

∫

∂Ω

f(ζ + rnζ)dS(ζ).

Proof. Since π|∂Ωr
: ∂Ωr → ∂Ω is a bijection and smooth map defined by

π|∂Ωr
(ζ + rnζ) = ζ, the determinant of the Jacobian Jπ−1|∂Ωr

≈ 1. Thus, the
proof is complete by the following equation,

∫

∂Ωr

f(η)dS(η) =

∫

∂Ωr

f(π(η) + rnπ(η))dS(η)

=

∫

∂Ω

f(ζ + rnζ)Jπ
−1|∂Ωr

dS(ζ)

≈

∫

∂Ω

f(ζ + rnζ)dS(ζ).
�

2.2. Green identity

Let Ω be a bounded open subset with smooth boundary in Rn. For u, v ∈
C2(Ω) the Green’s formula states that

∫

Ω

(u∆v − v∆u)dV =

∫

∂Ω

(uDn+v − vDn+u) dS,

where n+ is the outward unit normal vector and (Dn+u)(ζ) = ∇u(ζ) · n+(ζ).
The details for the statements above can be found in [1].

2.3. Subharmonic functions

Let f be a real-valued continuous function on Ω. For each z ∈ Ω, if there
exists a closed ball B(z,R) ⊂ Ω such that

f(z) ≤

∫

Sn

f(z + rζ)dσ(ζ)

whenever 0 < r < R, then f is a subharmonic function on Ω. Especially, when
f ∈ C2(Ω), f is subharmonic on Ω if and only if ∆f ≥ 0 on Ω. As we mentioned
in the previous section, it is well known that subharmonic functions satisfy the
maximum principle on the connected regions.

3. Volume integral means

The following theorem is the harmonic extension of the classical integral
means of a holomorphic function in the unit ball in Cn.

Theorem 3.1. Let Ω be a bounded domain with C∞-boundary in Rn. Suppose

1 < p ≤ ∞ and f is a non-constant harmonic function in Ω. Then Mp(f, r) is
strictly decreasing for r over (0, ǫ).
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Proof. Since |f | is subharmonic on Ω, the case p = ∞ is an consequence of the
maximum modulus principle. So we assume 1 < p < ∞. First, we will estimate
the case 2 ≤ p < ∞. Since |f(x)|p ∈ C2 when p ≥ 2, we obtain the following
equality by Green identity

∫

Ωr

∆|f(x)|pdV (x) =

∫

∂Ωr

Dn|f(η)|
pdS(η).(3.1)

By Proposition 2.1, we have
∫

∂Ωr

Dn|f(η)|
pdS(η) ≤ C

∫

∂Ω

Dn|f(ζ + rnζ)|
pdS(ζ)(3.2)

for some positive constant C.
Since Dn|f(ζ + rnζ)|

p = − d
ds |f(ζ + snζ)|

p|s=r, we have
∫

∂Ω

Dn|f(ζ + rnζ)|
pdS(ζ) = −

d

dr

∫

∂Ω

|f(ζ + rnζ)|
pdS(ζ).(3.3)

Let f(x) = u(x) + iv(x) where u(x), v(x) are real valued functions on Ω. Then
by a simple calculation, we have

∆|f |p = p(p− 2)|f |p−4|u∇u+ v∇v|2 + p|f |p−2|∇f |2

≥ p|f |p−2|∇f |2.

Thus, we obtain from (3.1)

d

dr

∫

∂Ω

|f(ζ + rnζ)|
pdS(ζ) ≤ −

1

C

∫

Ωr

p|f |p−2|∇f |2dV (x).(3.4)

Thus Mp(f, r) is a non-increasing function over r when 2 ≤ p < ∞. Now, we
consider the case 1 < p < 2. We should say that we follow the calculation in
[4, p.12]. First, we take the function (|f |2 + δ)p/2, 0 < δ < 1 and apply Green
identity to get

∫

∂Ωr

Dn(|f(η)|
2 + δ)p/2dS(η) =

∫

Ωr

∆(|f(x)|2 + δ)p/2dV (x).(3.5)

Since (|f |2+δ)p/2 is a C1-function on Ω we obtain the following inequality from
(3.2) and (3.3)

lim
δ→0

∫

∂Ωr

Dn(|f(η)|
2 + δ)p/2dS(η) =

∫

∂Ωr

Dn|f(η)|
pdS(η)

. −
d

dr

∫

∂Ω

|f(ζ + rnζ)|
pdS(ζ).(3.6)

Since we have

∆[(|f |2 + δ)p/2] = p(p− 2)(|f |2+ δ)p/2−2|u∇u+ v∇v|2+ p|∇f |2(|f |2+ δ)p/2−1

≥ p(|f |2 + δ)p/2−2[(p− 1)|f |2 + δ]|∇f |2,
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we obtain by Fatou’s Lemma

lim
δ→0

∫

Ωr

∆(|f(x)|2 + δ)p/2dV (x) ≥

∫

Ωr

lim inf
δ→0

∆(|f(x)|2 + δ)p/2dV (x)

≥

∫

Ωr

p(p− 1)|f |p−2|∇f |2dV (x).

Therefore we have the following inequality from (3.5), (3.6)

d

dr

∫

∂Ω

|f(ζ + rnζ)|
pdS(ζ) ≤ −

1

C

∫

Ωr

p(p− 1)|f |p−2|∇f |2dV (x).(3.7)

Consequently, (3.4) and (3.7) imply that Mp
p (f, r) is non-decreasing as r

tends to 0. Moreover, if there exist some r0 such that d
drM

p
p (f, r0) = 0, then we

can notice ∇f must be 0 on Ωr0 from (3.4) and (3.7). It induces a contradiction
for the assumption. Therefore the proof is complete. �

Now, we will show the monotonicity of Mp,α(f, r) over r. To prove our
results, we follow the argument used in [5].

Theorem 3.2. Suppose 1 < p ≤ ∞, α ∈ R and f is a non-constant harmonic

function in Ω. Then Mp,α(f, r) is strictly increasing when r tends to 0.

Proof. Applying the Fubini Theorem, we have
∫

Dr

|f(x)|p dvα(x) = cα,ǫ

∫

∂Ω

∫ ǫ

r

|f(ζ + tnζ)|
ptα dt dσ(ζ)

= cα,ǫ

∫ ǫ

r

Mp
p (f, t)t

α dt.

Since

vα(Dr) =
cα,ǫ
α+ 1

(ǫα+1 − rα+1),(3.8)

we obtain the similar form in [5] using integration by part,

Mp
p,α(f, r) −Mp

p (f, r) =
1

vα(Dr)

∫ ǫ

r

[

d

dt
Mp

p (f, t)

]

vα(Dt) dt.(3.9)

Also, we have the following equation

d

dr
Mp

p,α(f, r) =
rα

vα(Dr)
[Mp

p,α(f, r) −Mp
p (f, r)].

Since the left-hand side of (3.9) is positive by Theorem 3.1, Mp
p,α(f, r) is strictly

increasing when r tends to 0 unless f is constant. Thus the proof is complete.
�

Corollary 3.3. Suppose 1 < p < ∞, α ≤ −1, and f is a harmonic function

on Ω. Then

lim
r→0+

∫

Dr

|f(x)|pdvα(x) < ∞
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if and only if f is identically 0 on Ω.

Proof. We first show that the integral is finite implies f ≡ 0 on Ω. Since
vα(Dr) → +∞ as r → 0+ when α ≤ −1, Theorem 3.2 and the assumption give
us Mp

p,α(f, r) = 0 for all 0 < r ≤ ǫ. Thus f must be a constant by Theorem
3.2. Moreover, the assumption implies that f is identically 0. The converse is
trivial. �

Now, we induce the following applications naturally with our volume mean
integrals.

Theorem 3.4. Suppose 1 < p ≤ ∞ and f is a harmonic function on Ω.

(a) If α > −1, then

sup{Mp,α(f, r) : 0 < r ≤ ǫ} = ‖f‖p,α.

(b) If α ≤ −1, then

sup{Mp,α(f, r) : 0 < r ≤ ǫ} = ‖f‖p.

Proof. We know that vα(Dr) → vα(D) = 1 as r → 0+ when α > −1. Thus we
can obtain the result (a) by Theorem 3.2. For the proof of (b), we assume that
α ≤ −1 and f is not identically zero. Then Corollary 3.3 implies

lim
r→0+

∫

Dr

|f(x)|pdvα(x) = ∞.

Thus Theorem 3.2 and L’Hospital’s rule give us that

sup
0<r<ǫ

Mp
p,α(f, r) = lim

r→0+

1

vα(Dr)

∫

Dr

|f(x)|pdvα(x)

= lim
r→0+

∫

∂Ω

|f(ζ + rnζ)|
pdσ(ζ)

= sup
0<r<ǫ

Mp
p (f, r) = ‖f‖pp

as desired. �

Corollary 3.5. Suppose α > −1, 1 < p < ∞ and f is a non-constant harmonic

function in Ω. Then ‖f‖p,α is strictly decreasing for α.

Proof. Assume that −1 < α1 < α2 < ∞ and ‖f‖p,α1
< ∞. Then we have

‖f‖pp,α2
= −

∫ ǫ

0

d

dr

(
∫

Dr

|f |pdvα2

)

dr

= −
cα2,ǫ

cα1,ǫ

∫ ǫ

0

rα2−α1
d

dr

(
∫

Dr

|f |pdvα1

)

dr

=
cα2,ǫ

cα1,ǫ

∫ ǫ

0

(α2 − α1)r
α2−α1−1

∫

Dr

|f |pdvα1
dr.
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From Theorem 3.4(a) we know that for any 0 < r < ǫ,
∫

Dr

|f |pdvα1
≤ vα1

(Dr)

∫

D

|f |pdvα1
.

Thus we obtain the following inequality

‖f‖pp,α2
≤

cα2,ǫ

cα1,ǫ

∫ ǫ

0

(α2 − α1)r
α2−α1−1vα1

(Dr)

∫

D

|f |pdvα1
dr

= ‖f‖pp,α1

cα2,ǫ(α2 − α1)

α1 + 1

∫ ǫ

0

rα2−α1−1(ǫα1+1 − rα1+1)dr

= ‖f‖pp,α1

as we desired. �

Remark 3.6. It is easy to check that we can take ǫ = 1 when Ω is the unit ball in
Bn. Then the volume integral mean of the harmonic function f is represented
by

Mp
p,α(f, r) =

1

vα(B1−r)

∫

B1−r

|f(x)|pdvα(x),

where B1−r := Dr = {z ∈ Bn : |z| < 1 − r}. Thus, if we change the variable
1 − r to s, then we can notice that Mp

p,α(f, s) is strictly increasing when s
increases to 1 by Theorem 3.2. Thus, using the definition of volume mean
integral with (1.4) under our assumptions, we can easily notice that the results
and their proofs are the same with the case of holomorphic functions in [5].
Accordingly, we will use the definition (1.4) for the following section.

4. Further remark

In this section, we extend Remark 3.6 to the half-space setting. Because H

is a unbounded domain, Vα(H) is not finite even for α > −1. Instead we have
(4.4) below as a substitute. We first introduce a modified Kelvin transform K
which connects B and H. Then the result for H follows from the result for B.

For a fixed positive integer n ≥ 2, let H = Rn−1 ×R+ be the upper half-
space where R+ denotes the set of all positive real numbers. We will write a
point x ∈ H as x = (x′, xn) where x′ ∈ Rn−1 and xn ∈ R+.

The map Φ : Rn \ {−e} 7→ Rn \ {−e} is given by

Φ(x) =
(2x′, 1− |x|2)

|x+ e|2
,(4.1)

where e = (0′, 1) ∈ H is the standard reference point. Then the map Φ is a
Möbius transform taking B onto H and H onto B with Φ(e) = 0 and Φ(0) = e.
Also, Φ is an involution, i.e., Φ ◦ Φ is the identity map on Rn \ {−e}. The
following identities are easily computed as

|Φ(x) + e| =
2

|x+ e|
, 1− |Φ(x)|2 =

4xn

|x+ e|2
(4.2)
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and the Jacobian determinant JΦ is

JΦ(x) =

(

2

|x+ e|2

)n

.

For x, y ∈ B, the following identity comes from Lemma 2.2 in [3]

|Φ(x)− Φ(y)| =
2[x, y]

|x+ e||y + e|
,(4.3)

where [x, y] =
√

1− 2x · y + |x|2|y|2.
A modified Kelvin transform K with respect to the point −e is defined by

K[f ](x) = 2(n−2)/2 f ◦Φ(x)

|x+ e|n−2
.

In case n = 2, note that K[f ](x) = f ◦ Φ(x). Then K is its own inverse and
preserves harmonicity. That is, f is harmonic on H if and only if K[f ] is
harmonic on B. See Chapter 7 in [1] for details.

The pseudohyperbolic distance between two points x, y ∈ H is defined by

ρ(x, y) =
|x− y|

|x− y|
.

For x ∈ H, and 0 < r < 1, let Er(x) denote the pseudohyperbolic ball of radius
r centered at x.

Now, we define the volume integral mean on the upper half-space. If f is
harmonic on H and 1 < p < ∞, we define

Mp,α,H(f, r) =
1

µα(Er(e))

∫

Er(e)

|f(x)|p
(

|x+ e|

2

)(n−2)p

dµα(x),(4.4)

where the weighted measure dµα(x) is

dµα(x) =
22α+nxα

n

|x+ e|2(n+α)
dV (x).

Theorem 4.1. Suppose 1 < p < ∞, α ∈ R and f is a non-constant har-

monic function on H. Then the volume integral mean Mp,α,H(f, r) is strictly

increasing when r tends to 1.

Proof. Note that from (4.3), we have

ρ(Φ(x), e) =
|Φ(x)− Φ(0)|

|Φ(x)− Φ(0)|
= |x|

for x ∈ Br. It means

Φ(Br) = Er(e).

Since f is a non-constant harmonic on H, K[f ] is non-constant harmonic on
B. Using (4.2), we have

Mp,α(K[f ], r) =
1

Vα(Br)

∫

Br

2(n−2)/2 |f ◦ Φ(x)|p

|x+ e|(n−2)p
(1− |x|2)α dV (x)
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=
1

Vα(Br)

∫

Er(e)

|f(x)|p

|Φ(x) + e|(n−2)p
(1 − |Φ(x)|2)αJΦ(x) dV (x)

=
1

µα(Er(e))

∫

Er(e)

|f(x)|p
(

|x+ e|

2

)(n−2)p

dµα(x).

Consequently, we get

Mp,α,H(f, r) = Mp,α(K[f ], r).(4.5)

Thus the note above Remark 3.6 implies that Mp,α,H(f, r) is strictly increasing
when r tends to 1. The proof is complete. �

In case n = 2, this result gives us that the following integral mean on the
upper half-plane is strictly increasing when r tends to 1,

Mp,α,H(f, r) =
1

µα(Er(e))

∫

Er(e)

|f(x)|p dµα(x).
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