A CHARACTERIZATION OF WEIGHTED BERGMAN-PRIVALOV SPACES ON THE UNIT BALL OF \mathbb{C}^n

YASUO MATSUGU, JUN MIYAZAWA, AND SEI-ICHIRO UEKI

ABSTRACT. Let B denote the unit ball in \mathbb{C}^n , and ν the normalized Lebesgue measure on B. For $\alpha > -1$, define $d\nu_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha}d\nu(z)$, $z \in B$. Here c_{α} is a positive constant such that $\nu_{\alpha}(B) = 1$. Let H(B) denote the space of all holomorphic functions in B. For $p \geq 1$, define the Bergman-Privalov space $(AN)^p(\nu_{\alpha})$ by

$$(AN)^p(\nu_\alpha) = \{ f \in H(B) : \int_B \{ \log(1 + |f|) \}^p d\nu_\alpha < \infty \}.$$

In this paper we prove that a function $f \in H(B)$ is in $(AN)^p(\nu_\alpha)$ if and only if $(1+|f|)^{-2} \{\log(1+|f|)\}^{p-2} |\tilde{\nabla} f|^2 \in L^1(\nu_\alpha)$ in the case $1 , or <math>(1+|f|)^{-2} |f|^{-1} |\tilde{\nabla} f|^2 \in L^1(\nu_\alpha)$ in the case p=1, where $\tilde{\nabla} f$ is the gradient of f with respect to the Bergman metric on B. This is an analogous result to the characterization of the Hardy spaces by M. Stoll [18] and that of the Bergman spaces by C. Ouyang-W. Yang-R. Zhao [13].

1. Introduction

Let $n \geq 1$ be a fixed integer. Let H(B) denote the space of all holomorphic functions in the unit ball $B \equiv B_n$ of the complex n-dimensional Euclidean space \mathbb{C}^n . Let ν denote the normalized Lebesgue measure on B. For each $\alpha \in (-1, \infty)$, we set $c_{\alpha} = \Gamma(n + \alpha + 1)/\Gamma(n + 1)\Gamma(\alpha + 1)$ and $d\nu_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha}d\nu(z)$, $z \in B$. Note that $\nu_{\alpha}(B) = 1$. For each $\alpha \in (-1, \infty)$ and $p \in [1, \infty)$, we define the weighted Bergman-Privalov space $(AN)^p(\nu_{\alpha})$ by

$$(AN)^p(\nu_\alpha) = \left\{ f \in H(B) : \|f\|_{(AN)^p(\nu_\alpha)} \equiv \left[\int_B \{\log(1+|f|)\}^p d\nu_\alpha \right]^{\frac{1}{p}} < \infty \right\}.$$

Received January 28, 2002.

2000 Mathematics Subject Classification: Primary 32A37; Secondary 32A36.

Key words and phrases: Bergman-Privalov spaces, Privalov spaces, Bergman spaces, Riesz measure, Hardy-Orlicz spaces.

In [20], the Privalov space $N^p(B)$ (1 is defined by

$$N^{p}(B) = \left\{ f \in H(B) : \|f\|_{N^{p}(B)} \equiv \sup_{0 \le r \le 1} \left[\int_{S} \{ \log(1 + |f_{r}|) \}^{p} d\sigma \right]^{\frac{1}{p}} < \infty \right\},$$

where σ is the normalized Lebesgue measure on the unit sphere $S \equiv \partial B$ and $f_r(z) = f(rz)$ for $0 \le r < 1$, $z \in \mathbb{C}^n$ with $rz \in B$. In the case n = 1, the space $N^p(B_1)$ were firstly considered by I. I. Privalov in [14]. The properties of the spaces $N^p(B_n)$ $(n \ge 1)$ were studied in [3, 4, 5, 7, 8, 11, 17, 20, 21]. As regards the Bergman-Privalov spaces $(AN)^p(\nu)$, M. Stoll [17, p.157] gave the definition of them in the case n = 1. The studies on the spaces $(AN)^p(\nu)$ $(n \ge 1)$ were in [9, 10, 16, 17].

In 1995, C. Ouyang, W. Yang and R. Zhao [13] gave the following characterization of the Bergman spaces $A^p(B) \equiv H(B) \cap L^p(\nu)$, 0 :

THEOREM ([13]). Let $f \in H(B)$ and $0 . Then <math>f \in A^p(B)$ if and only if $|f|^{p-2}|\tilde{\nabla}f|^2 \in L^1(\nu)$. Here $\tilde{\nabla}f$ is the gradient of f with respect to the Bergman metric on B. Moreover, if $f \in A^p(B)$, then

$$\lim_{r \uparrow 1} (1 - r^2)^{n+1} \int_{rB} |f(z)|^{p-2} |\tilde{\nabla} f(z)|^2 (1 - |z|^2)^{-n-1} \, d\nu(z) = 0,$$

where $rB = \{z \in B : |z| < r\}, 0 < r < 1.$

This characterization of the Bergman spaces is the same type as that of the Hardy spaces by M. Stoll [18]. The purpose of the present paper is to give a characterization of the Bergman-Privalov spaces $(AN)^p(\nu_\alpha)$, $1 \le p < \infty$, which is of the M. Stoll-C. Ouyang-W. Yang-R. Zhao's type. By taking the limit as $\alpha \downarrow -1$, we also have a characterization of the Privalov spaces $N^p(B)$, 1 .

2. Notations

Let \mathcal{M} denote the group of biholomorphic maps of B onto itself. For each $a \in B$, let $\varphi_a \in \mathcal{M}$ be the involution described in [15, p.25]. Let λ be the measure on B defined by

$$d\lambda(z) = \frac{1}{(1-|z|^2)^{n+1}} d\nu(z), \ z \in B.$$

Then λ is the invariant volume measure induced by the Bergman metric on B. Thus

$$\int_{B} f \, d\lambda = \int_{B} (f \circ \psi) \, d\lambda$$

for each $f \in L^1(\lambda)$ and all $\psi \in \mathcal{M}$ ([15, Theorem 2.2.6]). For $f \in C^2(B)$ and $a \in B$, define

$$\tilde{\Delta}f(a) = \frac{1}{n+1}\Delta(f \circ \varphi_a)(0).$$

Then as in [15, Theorem 4.1.3],

$$\tilde{\Delta}f(a) = \frac{4}{n+1}(1-|a|^2)\sum_{i,j=1}^{n}(\delta_{ij}-a_i\bar{a}_j)\frac{\partial^2 f}{\partial z_i\partial\bar{z}_j}(a).$$

The operator $\tilde{\Delta}$ is invariant under \mathcal{M} , that is, $\tilde{\Delta}(f \circ \psi) = (\tilde{\Delta}f) \circ \psi$ for all $\psi \in \mathcal{M}$ ([15, Theorem 4.1.2]). Let $\tilde{\nabla}$ denote the gradient with respect to the Bergman metric on B ([19, p.27]). Then as in [19, p.30],

$$|\tilde{\nabla}f(a)|^2 = \frac{2}{n+1}(1-|a|^2)\left[\sum_{j=1}^n \left|\frac{\partial f}{\partial z_j}(a)\right|^2 - \left|\sum_{j=1}^n a_j \frac{\partial f}{\partial z_j}(a)\right|^2\right], \ a \in B.$$

An upper semicontinuous function $u: B \longrightarrow [-\infty, \infty), u \not\equiv -\infty$, is said to be \mathcal{M} -subharmonic if for each $a \in B$

$$u(a) \le \int_B u(\varphi_a(r\zeta)) d\sigma(\zeta), \ 0 < r < 1.$$

A continuous function u defined in B is said to be \mathcal{M} -harmonic if equality holds in the above inequality. A function u in B is said to be \mathcal{M} -superharmonic if -u is \mathcal{M} -subharmonic.

By [19, §6.2], the invariant Green's function on B is given by $G(z, a) = g(\varphi_a(z))$ for $(z, a) \in B \times B$, where

$$g(z) = \frac{n+1}{2n} \int_{|z|}^{1} (1-t^2)^{n-1} t^{-2n+1} dt.$$

Note that g is \mathcal{M} -harmonic in $B \setminus \{0\}$, and \mathcal{M} -superharmonic in B. Let f be an \mathcal{M} -subharmonic function in B. The Riesz measure of f is the non-negative regular Borel measure μ_f in B which satisfies

$$\int_{B} \psi \, d\mu_{f} = \int_{B} f \tilde{\Delta} \psi \, d\lambda$$

for all $\psi \in C_c^2(B)$. Here $C_c^2(B)$ is the class of twice continuously differentiable functions in B with compact support. If f is in $C^2(B)$, then by Green's identity [19, Proposition 3.1] $d\mu_f = \tilde{\Delta} f d\lambda$.

3. Preliminaries

Lemma 1. Suppose $\alpha \in (-1, \infty), \ p \in [1, \infty)$ and $f \in (AN)^p(\nu_\alpha)$. Then

$$\lim_{r \uparrow 1} \|f_r - f\|_{(AN)^p(\nu_\alpha)} = 0.$$

Proof. (cf. [6, Lemma 1.1]) Pick $\varepsilon > 0$. Then there exists an $r_0 \in (0,1)$ such that

$$\int_{B \setminus r_0 B} \{ \log(1 + |f|) \}^p \, d\nu_\alpha < \varepsilon.$$

Since $\{\log(1+|f|)\}^p$ is subharmonic in B, for any $r \in (0,1)$

$$(1) \qquad \int_{B \setminus r_0 B} \{\log(1+|f_r|)\}^p \, d\nu_\alpha \le \int_{B \setminus r_0 B} \{\log(1+|f|)\}^p \, d\nu_\alpha < \varepsilon.$$

The uniform continuity of $\{\log(1+|f|)\}^p$ on the compact set $r_0\bar{B}$ implies that

(2)
$$\lim_{r \uparrow 1} \int_{r \circ B} \{ \log(1 + |f_r - f|) \}^p \, d\nu_{\alpha} = 0.$$

(1) and (2) prove the lemma.

LEMMA 2. Suppose $f \in H(B)$ and $p \in (1, \infty)$. then

$$\lim_{\alpha \downarrow -1} \|f\|_{(AN)^p(\nu_\alpha)} = \|f\|_{N^p(B)}.$$

Proof. (cf. [1, p.25]) First we consider the case $||f||_{N^p(B)} < \infty$. It follows from the subharmonicity of $\{\log(1+|f|)\}^p$ that $||f||_{(AN)^p(\nu_\alpha)} \le ||f||_{N^p(B)} < \infty$ for any $\alpha \in (-1,\infty)$. Pick $\varepsilon > 0$. By [20, Theorem 4], it holds that

(3)
$$\lim_{r \uparrow 1} ||f_r - f||_{N^p(B)} = 0.$$

By (3), there exists an $r_0 \in (0,1)$ such that for $r \in [r_0,1)$

$$(4) ||f_r - f||_{N^p(B)} < \varepsilon.$$

Fix $r_1 \in (r_0, 1)$. Since $\{\log(1 + |f_{r_1}|)\}^p \in C(\bar{B})$, it holds that

(5)
$$\lim_{\alpha \downarrow -1} \|f_{r_1}\|_{(AN)^p(\nu_\alpha)} = \|f_{r_1}\|_{N^p(B)}.$$

(See [1, $\S 0.3$].) Using (4), we have for $\alpha \in (-1, \infty)$,

$$\begin{split} &\|f_{r_{1}} - f\|_{(AN)^{p}(\nu_{\alpha})}^{p} = \int_{B} \{\log(1 + |f_{r_{1}} - f|)\}^{p} d\nu_{\alpha} \\ &= c_{\alpha} 2n \left(\int_{0}^{\frac{r_{0}}{r_{1}}} + \int_{\frac{r_{0}}{r_{1}}}^{1} \right) t^{2n-1} (1 - t^{2})^{\alpha} dt \int_{S} \{\log(1 + |f_{r_{1}t} - f_{t}|)\}^{p} d\sigma \\ &\leq c_{\alpha} 2n \int_{0}^{\frac{r_{0}}{r_{1}}} t^{2n-1} (1 - t^{2})^{\alpha} dt \cdot (2\|f\|_{N^{p}(B)})^{p} \\ &+ c_{\alpha} 2n \int_{\frac{r_{0}}{r_{1}}}^{1} t^{2n-1} (1 - t^{2})^{\alpha} (\|f_{r_{1}t} - f\|_{N^{p}(B)})^{p} + \|f - f_{t}\|_{N^{p}(B)})^{p} dt \\ &\leq (2\|f\|_{N^{p}(B)})^{p} c_{\alpha} 2n \int_{0}^{\frac{r_{0}}{r_{1}}} (1 - t^{2})^{\alpha} dt + (2\varepsilon)^{p} c_{\alpha} 2n \int_{\frac{r_{0}}{r_{1}}}^{1} t^{2n-1} (1 - t^{2})^{\alpha} dt \\ &\leq (2\|f\|_{N^{p}(B)})^{p} \frac{2n\Gamma(n + \alpha + 1)}{\Gamma(n + 1)\Gamma(\alpha + 2)} \{1 - (1 - \frac{r_{0}}{r_{1}})^{\alpha + 1}\} + (2\varepsilon)^{p}. \end{split}$$

Hence

(6)
$$\limsup_{\alpha \downarrow -1} \|f_{r_1} - f\|_{(AN)^p(\nu_\alpha)} \le 2\varepsilon.$$

(4), (5) and (6) prove the lemma in the case $||f||_{N^p(B)} < \infty$.

Suppose now that $||f||_{N^p(B)} = \infty$. Pick an arbitrary number $M \in (0, \infty)$. Then there exists an $\rho_0 \in (0, 1)$ such that for $r \in [\rho_0, 1)$

$$\int_{S} \{\log(1+|f_r|)\}^p \, d\sigma > 2M.$$

Using this, we have for $\alpha \in (-1, \infty)$

$$||f||_{(AN)^{p}(\nu_{\alpha})}^{p} \ge c_{\alpha} 2n \int_{\rho_{0}}^{1} r^{2n-1} (1-r^{2})^{\alpha} dr \int_{S} \{\log(1+|f_{r}|)\}^{p} d\sigma$$

$$\ge c_{\alpha} 2n \int_{\rho_{0}}^{1} r^{2n-1} (1-r^{2})^{\alpha} dr \cdot 2M$$

$$= 2M \left\{ 1 - c_{\alpha} 2n \int_{0}^{\rho_{0}} r^{2n-1} (1-r^{2})^{\alpha} dr \right\}$$

$$\ge 2M \left\{ 1 - \frac{2n\Gamma(n+\alpha+1)}{\Gamma(n+1)\Gamma(\alpha+1)} \int_{0}^{\rho_{0}} (1-r)^{\alpha} dr \right\}$$

$$\ge 2M \left\{ 1 - \frac{2n\Gamma(n+\alpha+1)}{\Gamma(n+1)\Gamma(\alpha+2)} \left\{ 1 - (1-\rho_{0})^{\alpha+1} \right\} \right\}.$$

This implies that $\lim_{\alpha\downarrow -1} \|f\|_{(AN)^p(\nu_\alpha)} = +\infty = \|f\|_{N^p(B)}$.

By a simple computation we can prove the following lemma and its corollary.

LEMMA 3. Suppose $f \in H(B)$, $1 \le p < \infty$ and $\varepsilon > 0$. Then

$$\tilde{\Delta}(\{\log(1+|f|)\}^p) = \frac{p}{2} \frac{1}{(1+|f|)^2} \left[(p-1) + \frac{\log(1+|f|)}{|f|} \right] \times \{\log(1+|f|)\}^{p-2} |\tilde{\nabla}f|^2$$

in $B \setminus Z(f)$, where $Z(f) = \{z \in B : f(z) = 0\}$, and

$$\tilde{\Delta} \left(\left[\log(1 + (|f|^2 + \varepsilon)^{1/2}) \right]^p \right)$$

$$= \frac{p}{2} (|f|^2 + \varepsilon)^{-3/2} \{ 1 + (|f|^2 + \varepsilon)^{1/2} \}^{-2} \left[\log(1 + (|f|^2 + \varepsilon)^{1/2}) \right]^{p-2}$$

$$\times \left[(p-1)|f|^2 (|f|^2 + \varepsilon)^{1/2} + \{|f|^2 + 2\varepsilon(1 + (|f|^2 + \varepsilon)^{1/2}) \} \right]$$

$$\times \{ \log(1 + (|f|^2 + \varepsilon)^{1/2}) \} |\tilde{\nabla} f|^2$$

in B.

COROLLARY 1. Suppose
$$f \in H(B)$$
 and $1 \le p < \infty$. Then
$$\lim_{\varepsilon \downarrow 0} \tilde{\Delta} \left(\left[\log(1 + (|f|^2 + \varepsilon)^{1/2}) \right]^p \right) = \tilde{\Delta} (\{ \log(1 + |f|) \}^p)$$
 in $B \setminus Z(f)$.

LEMMA 4. Let $f \in H(B) \setminus \{0\}$ and $1 \le p < \infty$. Then

(a)
$$\tilde{\Delta}(\{\log(1+|f|)\}^p) \in L^1_{loc}(\lambda)$$
.

(b)
$$d\mu_{\{\log(1+|f|)\}^p} = \tilde{\Delta}(\{\log(1+|f|)\}^p)d\lambda.$$

Proof. Put $v = \{\log(1+|f|)\}^p$ in B. For $\varepsilon \in (0,1)$, let v_{ε} be defined by $v_{\varepsilon} = \left[\left(\log(1+(|f|^2+\varepsilon)^{1/2})\right)\right]^p$ in B. And define

$$\varphi_{\varepsilon}(t) = (t+\varepsilon)^{-3/2} \{1 + (t+\varepsilon)^{1/2}\}^{-2} \left[(p-1)t(t+\varepsilon)^{1/2} + \{t + 2\varepsilon(1 + (t+\varepsilon)^{1/2})\} \{\log(1 + (t+\varepsilon)^{1/2})\} \right]$$

for $t > -\varepsilon$. Then $v_{\varepsilon} \in C^{\infty}(B)$ and

(7) $v_{\varepsilon} \to v$ uniformly on compact subsets of B as $\varepsilon \downarrow 0$.

We can also easily see that

(8)
$$0 < \varphi_{\varepsilon}(t) < p+2 \text{ if } t \ge 0.$$

By Lemma 3, (8) and Corollary 1, it holds that for $\varepsilon \in (0,1)$, in B

$$0 \le \tilde{\Delta}v_{\varepsilon} = \frac{p}{2}\varphi_{\varepsilon}(|f|^{2}) \left[\log(1 + (|f|^{2} + \varepsilon)^{1/2}) \right]^{p-2} |\tilde{\nabla}f|^{2}$$

$$(9) \qquad \qquad \le \frac{p}{2}(p+2) \left[\log(1 + (|f|^{2} + \varepsilon)^{1/2}) \right]^{p-2} |\tilde{\nabla}f|^{2}$$

and, in $B \setminus Z(f)$

(10)
$$\lim_{\varepsilon \downarrow 0} \tilde{\Delta} v_{\varepsilon} = \tilde{\Delta} v.$$

Since f is holomorphic and $f \not\equiv 0$ in B,

(11)
$$\lambda(Z(f)) = 0.$$

By Lemma 3, in $B \setminus Z(f)$

(12)
$$\{\log(1+|f|)\}^{p-2}|\tilde{\nabla}f|^2 = \frac{2}{p} \frac{(1+|f|)^2}{(p-1) + \frac{\log(1+|f|)}{|f|}} \tilde{\Delta}v.$$

When $1 \le p \le 2$, it follows from (12) that in $B \setminus Z(f)$

$$(13) \quad \{\log(1+|f|)\}^{p-2}|\tilde{\nabla}f|^2 \le (\log 2)^{p-2}|\tilde{\nabla}f|^2 + \frac{2}{p}\frac{4}{(p-1)+\log 2}\tilde{\Delta}v.$$

By (9) and (13), for $\varepsilon \in (0,1)$, in B

$$(14) \qquad 0 \le \tilde{\Delta}v_{\varepsilon} \le \frac{p}{2}(p+2) \left[(\log 2)^{p-2} |\tilde{\nabla}f|^2 + \frac{2}{p} \frac{4}{(p-1) + \log 2} \tilde{\Delta}v \right]$$

if $1 \le p \le 2$. In the case $2 , by (9), for <math>\varepsilon \in (0,1)$, in B

(15)
$$0 \le \tilde{\Delta} v_{\varepsilon} \le \frac{p}{2} (p+2) \left[\log(1 + (|f|^2 + 1)^{1/2}) \right]^{p-2} |\tilde{\nabla} f|^2.$$

Let K be any compact subset of B, and let $\psi \in C_c^2(B)$ with $\psi \geq 0$ in B such that $\psi \equiv 1$ on K. Using (10), (11), Fatou's lemma and Green's identity, we have

$$0 \leq \int_{K} \tilde{\Delta} v \, d\lambda \leq \liminf_{\varepsilon \downarrow 0} \int_{K} \tilde{\Delta} v_{\varepsilon} \, d\lambda = \liminf_{\varepsilon \downarrow 0} \int_{K} \psi \tilde{\Delta} v_{\varepsilon} \, d\lambda$$

$$\leq \liminf_{\varepsilon \downarrow 0} \int_{B} \psi \tilde{\Delta} v_{\varepsilon} \, d\lambda = \liminf_{\varepsilon \downarrow 0} \int_{B} v_{\varepsilon} \tilde{\Delta} \psi \, d\lambda.$$
(16)

Since $\tilde{\Delta}\psi$ is a continuous function with compact support in B, by (7)

(17)
$$\liminf_{\varepsilon \downarrow 0} \int_{B} v_{\varepsilon} \tilde{\Delta} \psi \, d\lambda = \int_{B} v \tilde{\Delta} \psi \, d\lambda < \infty.$$

(16) and (17) show the assertion (a), that is,

(18)
$$\tilde{\Delta}v \in L^1_{loc}(\lambda).$$

In order to prove (b), pick $\phi \in C_c^2(B)$. By (14), (15) and (18), the functions $\{\tilde{\Delta}v_{\varepsilon}: 0<\varepsilon<1\}$ are dominated by a function in $L^1_{loc}(\lambda)$. By Lebesgue's dominated convergence theorem, Green's identity and (7), we have

$$\int_{B} \phi \tilde{\Delta} v \, d\lambda = \lim_{\varepsilon \downarrow 0} \int_{B} \phi \tilde{\Delta} v_{\varepsilon} \, d\lambda = \lim_{\varepsilon \downarrow 0} \int_{B} v_{\varepsilon} \tilde{\Delta} \phi \, d\lambda = \int_{B} v \tilde{\Delta} \phi \, d\lambda.$$
 This proves (b).

LEMMA 5. Let f be a non-negative measurable function in B. Then the following inequalities hold:

$$\frac{1}{2} \int_{B} f(z)(1-|z|^{2})^{\beta+1} d\lambda(z) \leq \int_{0}^{1} dt \int_{tB} f(z)(1-|z|^{2})^{\beta} d\lambda(z)$$
(19)
$$\leq \int_{B} f(z)(1-|z|^{2})^{\beta+1} d\lambda(z)$$

for all $\beta \in \mathbb{R}$. And

(20)
$$(1-r^2)^{\beta+1} \int_{rB} f \, d\lambda \le 2 \int_r^1 dt \int_{tB} f(z) (1-|z|^2)^{\beta} \, d\lambda(z)$$

for all $r \in (0,1)$ and $\beta \in \mathbb{R}$ with $\beta \geq 0$.

Proof. For $\beta \in \mathbb{R}$,

$$\int_0^1 dt \int_{tB} f(z) (1-|z|^2)^\beta d\lambda(z) = \int_B f(z) (1-|z|^2)^{\beta+1} \frac{1}{1+|z|} d\lambda(z).$$

Since $\frac{1}{2} < \frac{1}{1+|z|} \le 1$ for all $z \in B$, we get (19).

Fix $r \in (0,1)$ and $\beta \geq 0$. Then

$$(1 - r^2)^{\beta + 1} \int_{rB} f \, d\lambda \le (1 - r^2) \int_{rB} f(z) (1 - |z|^2)^{\beta} \, d\lambda(z)$$

$$(21) \qquad \le 2 \int_{rB} f(z) (1 - |z|^2)^{\beta} \, d\lambda(z) \int_{r}^{1} dt.$$

On the other hand,

$$\int_{r}^{1} dt \int_{tB} f(z) (1 - |z|^{2})^{\beta} d\lambda(z)
= \int_{rB} f(z) (1 - |z|^{2})^{\beta} d\lambda(z) \int_{r}^{1} dt + \int_{B \backslash rB} f(z) (1 - |z|^{2})^{\beta} d\lambda(z) \int_{|z|}^{1} dt
(22)
\ge \int_{rB} f(z) (1 - |z|^{2})^{\beta} d\lambda(z) \int_{r}^{1} dt.$$

COROLLARY 2. Suppose that f is a non-negative measurable function in $B, \beta \in [0, \infty)$ and

(23)
$$\int_{B} f(z)(1-|z|^{2})^{\beta+1} d\lambda(z) < \infty.$$

Then

(24)
$$\lim_{r\uparrow 1} \left[(1-r^2)^{\beta+1} \int_{rB} f \, d\lambda \right] = 0.$$

Proof. By (23) and (19), we have

(25)
$$\lim_{r\uparrow 1} \left[\int_r^1 dt \int_{tB} f(z) (1-|z|^2)^{\beta} d\lambda(z) \right] = 0.$$

4. Main results

The proof of the following theorem goes along the same line as that of C. Ouyang-W. Yang-R. Zhao's theorem ([13, Theorem 1]).

Theorem 1. Let $-1 < \alpha < \infty$ and $1 \le p < \infty$.

(a) Every $f \in H(B) \setminus \{0\}$ satisfies the following inequalities:

$$\frac{a_n \Gamma(n+\alpha+1)}{2^{\alpha+\alpha^+}(n+\alpha+1)\Gamma(\alpha+2)} \int_B \tilde{\Delta}(\{\log(1+|f|)\}^p)(z)(1-|z|^2)^{\alpha} d\nu(z) + \{\log(1+|f(0)|)\}^p$$

$$\leq \|f\|_{(AN)^p(\nu_\alpha)}^p$$

$$\leq \frac{b_n 2^{\alpha + \alpha^+} \Gamma(n + \alpha + 1)}{(n + \alpha + 1) \Gamma(\alpha + 2)} \int_B \tilde{\Delta}(\{\log(1 + |f|)\}^p)(z) (1 - |z|^2)^{\alpha} d\nu(z)$$

$$+ \int_S \{\log(1 + |f_{\frac{1}{2}}|)\}^p d\sigma,$$

where

$$a_n = \frac{n+1}{2^{n+2}\Gamma(n+1)}, \qquad b_n = \frac{2^{3n-1}(n+1)}{\Gamma(n+1)}.$$

(b) A function $f \in H(B) \setminus \{0\}$ is in $(AN)^p(\nu_\alpha)$ if and only if

$$\int_{B} \tilde{\Delta}(\{\log(1+|f|)\}^{p}) \, d\nu_{\alpha} < \infty.$$

(c) Suppose $1 and <math>f \in H(B)$. Then $f \in (AN)^p(\nu_\alpha)$ if and only if

$$\int_{B} \frac{\{\log(1+|f|)\}^{p-2}}{(1+|f|)^{2}} |\tilde{\nabla}f|^{2} d\nu_{\alpha} < \infty.$$

(d) A function $f \in H(B) \setminus \{0\}$ is in $(AN)^1(\nu_\alpha)$ if and only if

$$\int_{B} \frac{|\tilde{\nabla}f|^2}{|f|(1+|f|)^2} \, d\nu_{\alpha} < \infty.$$

(e) If $f \in (AN)^p(\nu_\alpha) \setminus \{0\}$, then

$$\lim_{r\uparrow 1} \left[(1-r^2)^{n+1+\alpha} \int_{rB} \tilde{\Delta}(\{\log(1+|f|)\}^p) \, d\lambda \right] = 0.$$

(f) Suppose $1 and <math>f \in (AN)^p(\nu_\alpha)$. Then

$$\lim_{r \uparrow 1} \left[(1 - r^2)^{n+1+\alpha} \int_{rB} \frac{\{ \log(1 + |f|) \}^{p-2}}{(1 + |f|)^2} |\tilde{\nabla} f|^2 d\lambda \right] = 0.$$

(g) If
$$f \in (AN)^1(\nu_\alpha) \setminus \{0\}$$
, then

$$\lim_{r\uparrow 1} \left[(1-r^2)^{n+1+\alpha} \int_{rB} \frac{|\tilde{\nabla}f|^2}{|f|(1+|f|)^2} \, d\lambda \right] = 0.$$

Proof. For each $\varepsilon > 0$, let

$$v_{\varepsilon} = \left[\log(1 + (|f|^2 + \varepsilon)^{1/2})\right]^p.$$

Then $v_{\varepsilon} \in C^{\infty}(B)$. For $0 < \delta < r < 1$, let $\Omega_{\delta r} = \{z \in B : \delta < |z| < r\}$. By Green's formula as in [2, §3.3]

$$\begin{split} &\int_{\Omega_{\delta r}} \left[\{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} - v_{\varepsilon} \tilde{\Delta} \{g - g(re_1)\} \right] d\tilde{\tau} \\ &= \int_{\partial \Omega_{\delta r}} \left[\{g - g(re_1)\} \frac{\partial v_{\varepsilon}}{\partial \tilde{n}} - v_{\varepsilon} \frac{\partial}{\partial \tilde{n}} \{g - g(re_1)\} \right] d\tilde{\sigma}, \end{split}$$

where $d\tilde{\tau}$ is the volume element on B determined by the Bergman metric, $d\tilde{\sigma}$ is the surface area element on $\partial\Omega_{\delta r}$ determined by the Bergman metric, and $\frac{\partial}{\partial \tilde{n}}$ denotes the outward normal differentiation along $\partial\Omega_{\delta r}$ with respect to the Bergman metric. Note that $\tilde{\Delta}(\{g-g(re_1)\})=0$ in $\Omega_{\delta r},\ g-g(re_1)=0$ on $rS\equiv\{z\in\mathbb{C}^n:|z|=r\}$, and $g-g(re_1)=g(\delta e_1)-g(re_1)$ on δS . Thus

$$\int_{\Omega_{\delta r}} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} d\tilde{\tau}
(26)$$

$$= -\{g(\delta e_1) - g(re_1)\} \int_{\delta S} \frac{\partial v_{\varepsilon}}{\partial \tilde{n}} d\tilde{\sigma}_{\delta} - \int_{rS} v_{\varepsilon} \frac{\partial g}{\partial \tilde{n}} d\tilde{\sigma}_{r} + \int_{\delta S} v_{\varepsilon} \frac{\partial g}{\partial \tilde{n}} d\tilde{\sigma}_{\delta},$$

where $d\tilde{\sigma}_t$ is the surface area element on tS. By [2, p.18, (6)],

(27)
$$d\tilde{\tau}(z) = \frac{\omega_n (n+1)^n}{2n(1-|z|^2)^{n+1}} d\nu(z) = \frac{\omega_n (n+1)^n}{2n} d\lambda(z), \quad z \in B,$$

where ω_n denotes the Euclidean surface area of S. Since $\{g - g(re_1)\}\$ $(\tilde{\Delta}v_{\varepsilon}) \in L^1(\tilde{\tau})$ on rB, (27) gives

$$\lim_{\delta \downarrow 0} \int_{\Omega_{\delta r}} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} d\tilde{\tau} = \int_{rB} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} d\tilde{\tau}$$

$$= \frac{\omega_n (n+1)^n}{2n} \int_{rB} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} d\lambda.$$
(28)

By [2, p.20, (10)],

(29)
$$\frac{\partial g}{\partial \tilde{n}} = -\frac{(n+1)^{1/2}}{2n} \frac{(1-t^2)^n}{t^{2n-1}} \quad \text{on } tS \quad (0 < t < 1).$$

By [2, the bottom line of p.19], for $t \in (0,1)$ and $\zeta \in S$,

$$\left| \frac{\partial v_{\varepsilon}}{\partial \tilde{n}}(t\zeta) \right| = \frac{2}{\sqrt{n+1}} (1-t^2) \left| \Re \left[\sum_{j=1}^{n} \zeta_j \frac{\partial v_{\varepsilon}}{\partial z_j}(t\zeta) \right] \right|
\leq \frac{2}{\sqrt{n+1}} (1-t^2) \sum_{j=1}^{n} \left| \frac{\partial v_{\varepsilon}}{\partial z_j}(t\zeta) \right|.$$
(30)

By [2, p.19, (7)], for $t \in (0,1)$ and $\zeta \in S$.

(31)
$$d\tilde{\sigma}_t(t\zeta) = \frac{\omega_n(n+1)^{n-1/2}t^{2n-1}}{(1-t^2)^n}d\sigma(\zeta).$$

By (30) and (31),

$$\left| \left\{ g(\delta e_1) - g(re_1) \right\} \int_{\delta S} \frac{\partial v_{\varepsilon}}{\partial \tilde{n}} d\tilde{\sigma}_{\delta} \right|
(32) \qquad \leq \frac{2\omega_n (n+1)^{n-1} \delta^{2n-1}}{(1-\delta^2)^{n-1}} g(\delta e_1) \int_{S} \sum_{j=1}^{n} \left| \frac{\partial v_{\varepsilon}}{\partial z_j} (\delta \zeta) \right| d\sigma(\zeta).$$

Since $\lim_{\delta\downarrow 0} \delta^{2n-1} g(\delta e_1) = 0$ [19, p.65, (6.6)], it follows from (32) that

(33)
$$\lim_{\delta \downarrow 0} \{g(\delta e_1) - g(re_1)\} \int_{\delta S} \frac{\partial v_{\varepsilon}}{\partial \tilde{n}} d\tilde{\sigma}_{\delta} = 0.$$

Moreover, (29) and (31) give

(34)
$$\lim_{\delta \downarrow 0} \int_{\delta \mathcal{E}} v_{\varepsilon} \frac{\partial g}{\partial \tilde{n}} d\tilde{\sigma}_{\delta} = -\frac{\omega_n (n+1)^n}{2n} v_{\varepsilon}(0)$$

and

(35)
$$-\int_{rS} v_{\varepsilon} \frac{\partial g}{\partial \tilde{n}} d\tilde{\sigma}_{r} = \frac{\omega_{n}(n+1)^{n}}{2n} \int_{S} (v_{\varepsilon})_{r} d\sigma.$$

By (26), (28), (33), (34) and (35), we have

(36)
$$\int_{rB} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} d\lambda = \int_{S} (v_{\varepsilon})_r d\sigma - v_{\varepsilon}(0).$$

Since $(v_{\varepsilon})_r \to {\log(1+|f_r|)}^p$ uniformly on S as $\varepsilon \downarrow 0$,

(37)
$$\lim_{\varepsilon \downarrow 0} \int_{S} (v_{\varepsilon})_{r} d\sigma = \int_{S} \{\log(1 + |f_{r}|)\}^{p} d\sigma.$$

$$\lim_{\varepsilon \downarrow 0} \int_{rB} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} \, d\lambda = \int_{S} \{\log(1 + |f_r|)\}^p \, d\sigma - \{\log(1 + |f(0)|)\}^p.$$

By Corollary 1, Fatou's lemma and (38),

$$\begin{split} \int_{rB} \{g - g(re_1)\} \tilde{\Delta} v \, d\lambda &\leq \liminf_{\varepsilon \downarrow 0} \int_{rB} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} \, d\lambda \\ &= \int_{S} \{\log(1 + |f_r|)\}^p d\sigma - \{\log(1 + |f(0)|)\}^p < \infty, \end{split}$$

where $v = {\log(1 + |f|)}^p$. Thus

(39)
$$\{g - g(re_1)\} \tilde{\Delta} v \in L^1(\lambda, rB).$$

By (9) and (13) for any $\varepsilon \in (0, 1]$,

$$\frac{2}{p(p+2)} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon}
\leq \{g - g(re_1)\} [\log(1+|f|)]^{p-2} |\tilde{\nabla} f|^2
\leq \{g - g(re_1)\} \left\{ (\log 2)^{p-2} |\tilde{\nabla} f|^2 + \frac{2}{p} \frac{4}{(p-1) + \log 2} \tilde{\Delta} v \right\}$$

(40)
=
$$(\log 2)^{p-2} |\tilde{\nabla} f|^2 \{g - g(re_1)\} + \frac{2}{p} \frac{4}{(p-1) + \log 2} \{g - g(re_1)\} \tilde{\Delta} v$$

in $rB \setminus Z(f)$, if $1 \le p \le 2$. Since $g - g(re_1) \in L^1_{loc}(\lambda)$, by (39),

$$(\log 2)^{p-2} |\tilde{\nabla} f|^2 \{g - g(re_1)\} + \frac{2}{p} \frac{4}{(p-1) + \log 2} \{g - g(re_1)\} (\tilde{\Delta} v)$$

$$\in L^1(\lambda, rB).$$

If $2 , then for any <math>\varepsilon \in (0,1]$,

$$\frac{2}{p(p+2)} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} \le \{g - g(re_1)\} \left[\log(1 + (|f|^2 + 1)^{1/2}) \right]^{p-2} |\tilde{\nabla} f|^2$$

in $rB \setminus Z(f)$. Since $g - g(re_1) \in L^1_{loc}(\lambda)$,

(43)
$$\{g - g(re_1)\} \left[\log(1 + (|f|^2 + 1)^{1/2}) \right]^{p-2} |\tilde{\nabla} f|^2 \in L^1(\lambda, rB).$$

By Corollary 1 and (40) \sim (43), we can apply Lebesgue's dominated convergence theorem to (38). Hence we have

$$\int_{rB} \{g - g(re_1)\} \tilde{\Delta} v \, d\lambda = \lim_{\varepsilon \downarrow 0} \int_{rB} \{g - g(re_1)\} \tilde{\Delta} v_{\varepsilon} \, d\lambda = \int_{S} v_r \, d\sigma - v(0).$$

The left hand side of (44) is

$$\int_{rB} \{g - g(re_1)\} \tilde{\Delta}v \, d\lambda = \frac{n+1}{2n} \int_{rB} \tilde{\Delta}v \, d\lambda \int_{|z|}^{r} (1-t^2)^{n-1} t^{-2n+1} \, dt
= \frac{n+1}{2n} \int_{0}^{r} (1-t^2)^{n-1} t^{-2n+1} \, dt \int_{tB} \tilde{\Delta}v \, d\lambda
\geq \frac{n+1}{2n} r^{-2n+1} \int_{0}^{r} (1-t^2)^{n-1} \, dt \int_{tB} \tilde{\Delta}v \, d\lambda.$$
(45)

On the other hand, for 0 < r < 1, there exists a positive integer k such that $1/2^k \le r < 1/2^{k-1}$. Thus

$$\frac{n+1}{2n} \int_{0}^{r} (1-t^{2})^{n-1} t^{-2n+1} dt \int_{tB} \tilde{\Delta}v \, d\lambda$$

$$= \frac{n+1}{2n} \left(\int_{0}^{\frac{1}{2^{k}}} + \int_{\frac{1}{2^{k}}}^{r} \right) (1-t^{2})^{n-1} t^{-2n+1} dt \int_{tB} \tilde{\Delta}v \, d\lambda$$

$$\leq \frac{n+1}{2n} \int_{0}^{\frac{1}{2}} (1-t^{2})^{n-1} t^{-2n+1} dt \int_{tB} \tilde{\Delta}v \, d\lambda$$

$$+ \frac{n+1}{2n} 2^{k(2n-1)} \int_{0}^{r} (1-t^{2})^{n-1} dt \int_{tB} \tilde{\Delta}v \, d\lambda$$

$$\equiv I_{1} + I_{2}.$$

By $(44) \sim (46)$,

(47)
$$I_1 = \int_{\frac{1}{2}B} \{g - g(2^{-1}e_1)\} \tilde{\Delta} v \, d\lambda = \int_S v_{\frac{1}{2}} \, d\sigma - v(0) < \infty.$$

Since $2^{k(2n-1)} < 2^{2n-1}r^{-2n+1}$,

(48)
$$I_2 \le \frac{n+1}{2n} 2^{2n-1} r^{-2n+1} \int_0^r (1-t^2)^{n-1} dt \int_{tB} \tilde{\Delta} v \, d\lambda.$$

By $(44) \sim (48)$ for any $r \in (0,1)$

$$\beta_{n}r^{-2n+1} \int_{0}^{r} (1-t^{2})^{n-1} dt \int_{tB} \tilde{\Delta}v \, d\lambda + v(0)$$

$$\leq \int_{S} v_{r} \, d\sigma,$$

$$\leq \gamma_{n}r^{-2n+1} \int_{0}^{r} (1-t^{2})^{n-1} \, dt \int_{tB} \tilde{\Delta}v \, d\lambda + \int_{S} v_{\frac{1}{2}} \, d\sigma,$$

where $\beta_n = \frac{n+1}{2n}$ and $\gamma = \frac{n+1}{2n} 2^{2n-1}$. Note that

$$||f||_{(AN)^p(\nu_\alpha)}^p = \int_B \{\log(1+|f|)\}^p d\nu_\alpha = c_\alpha 2n \int_0^1 r^{2n-1} (1-r^2)^\alpha dr \int_S v_r d\sigma.$$

It follows from this and (49) that

$$\beta_{n} c_{\alpha} 2n \int_{0}^{1} (1 - t^{2})^{n-1} dt \int_{tB} \tilde{\Delta} v \, d\lambda \int_{t}^{1} (1 - r^{2})^{\alpha} \, dr + v(0)$$

$$(50) \leq \|f\|_{(AN)^{p}(\nu_{\alpha})}^{p}$$

$$\leq \gamma_{n} c_{\alpha} 2n \int_{0}^{1} (1 - t^{2})^{n-1} dt \int_{tB} \tilde{\Delta} v \, d\lambda \int_{t}^{1} (1 - r^{2})^{\alpha} \, dr + \int_{S} v_{\frac{1}{2}} d\sigma.$$

For $\alpha \in (-1, \infty)$ and $t \in (0, 1)$, it holds that

(51)
$$\frac{(1-t^2)^{1+\alpha}}{2^{1+\alpha^+}(1+\alpha)} < \int_t^1 (1-r^2)^\alpha \, dr < \frac{2^{\alpha^+}(1-t^2)^{1+\alpha}}{1+\alpha},$$

where $\alpha^+ = 0$ if $\alpha \le 0$, $\alpha^+ = \alpha$ if $\alpha > 0$. By (51),

$$\beta_{n}c_{\alpha}2n\int_{0}^{1}(1-t^{2})^{n-1}dt\int_{tB}\tilde{\Delta}v\,d\lambda\int_{t}^{1}(1-r^{2})^{\alpha}dr$$
(52)
$$\geq \beta_{n}c_{\alpha}2n\frac{1}{2^{1+\alpha^{+}}(1+\alpha)}\int_{0}^{1}(1-t^{2})^{n+\alpha}dt\int_{tB}\tilde{\Delta}v\,d\lambda$$

$$= \frac{2n\beta_{n}c_{\alpha}}{2^{1+\alpha^{+}}(1+\alpha)}\int_{B}(\tilde{\Delta}v)(z)\,d\lambda(z)\int_{|z|}^{1}(1-t^{2})^{n+\alpha}dt.$$

Similarly,

$$(53) \gamma_n c_{\alpha} 2n \int_0^1 (1 - t^2)^{n-1} dt \int_{tB} \tilde{\Delta} v \, d\lambda \int_t^1 (1 - r^2)^{\alpha} \, dr$$
$$\leq \frac{2^{\alpha^+} 2n \gamma_n c_{\alpha}}{1 + \alpha} \int_B (\tilde{\Delta} v)(z) \, d\lambda(z) \int_{|z|}^1 (1 - t^2)^{n+\alpha} \, dt.$$

Moreover, we can easily show that

$$(54) \quad \frac{(1-|z|^2)^{n+\alpha+1}}{2^{n+\alpha+1}(n+\alpha+1)} < \int_{|z|}^1 (1-t^2)^{n+\alpha} dt \le \frac{2^{n+\alpha}(1-|z|^2)^{n+\alpha+1}}{n+\alpha+1}$$

for all $z \in B$. By (50), (52), (53) and (54), we obtain

$$\frac{a_n \Gamma(n+\alpha+1)}{2^{\alpha+\alpha^+}(n+\alpha+1)\Gamma(\alpha+2)} \int_B \tilde{\Delta}v(z) (1-|z|^2)^{\alpha} d\nu(z) + v(0)
\leq \|f\|_{(AN)^p(\nu_\alpha)}^p
\leq \frac{b_n 2^{\alpha+\alpha^+} \Gamma(n+\alpha+1)}{(n+\alpha+1)\Gamma(\alpha+2)} \int_B \tilde{\Delta}v(z) (1-|z|^2)^{\alpha} d\nu(z) + \int_S v_{\frac{1}{2}} d\sigma.$$

This proves (a). (b) follows from (a). (c) and (d) follow from Lemma 3 and (b). (e) follows from (b) and Corollary 2. (f) follows from (c) and Corollary 2. Furthermore, (g) follows from (d) and Corollary 2.

Theorem 2. Suppose 1 .

(a) A function $f \in H(B) \setminus \{0\}$ is in $N^p(B)$ if and only if

$$\int_{B} \tilde{\Delta}(\{\log(1+|f|)\}^p)(z) \frac{d\nu(z)}{1-|z|^2} < \infty.$$

(b) For $f \in H(B)$, $f \in N^p(B)$ if and only if

$$\int_{B} \frac{\{\log(1+|f(z)|)\}^{p-2}}{(1+|f(z)|)^{2}} |\tilde{\nabla}f(z)|^{2} \frac{d\nu(z)}{1-|z|^{2}} < \infty.$$

(c) If $f \in N^p(B) \setminus \{0\}$, then

$$\lim_{r\uparrow 1} \left[(1-r^2)^n \int_{rB} \tilde{\Delta}(\{\log(1+|f|)\}^p) \, d\lambda \right] = 0.$$

(d) If $f \in N^p(B)$, then

$$\lim_{r \uparrow 1} \left[(1 - r^2)^n \int_{rB} \frac{\{ \log(1 + |f|) \}^{p-2}}{(1 + |f|)^2} |\tilde{\nabla} f|^2 d\lambda \right] = 0.$$

Proof. Let $f \in H(B) \setminus \{0\}$. The monotone convergence theorem gives

(55)
$$\lim_{\alpha \downarrow -1} \int_{B} \tilde{\Delta}(\{\log(1+|f|)\}^{p})(z)(1-|z|^{2})^{\alpha} d\nu(z)$$
$$= \int_{B} \tilde{\Delta}(\{\log(1+|f|)\}^{p})(z)(1-|z|^{2})^{-1} d\nu(z).$$

And note that

(56)
$$\lim_{\alpha \downarrow -1} \frac{\Gamma(n+\alpha+1)}{2^{\alpha+\alpha^+}(n+\alpha+1)\Gamma(\alpha+2)} = \frac{2\Gamma(n)}{n}.$$

By Theorem 1(a), Lemma 2, (55) and (56), we have

$$\begin{split} &\frac{a_n 2\Gamma(n)}{n} \int_B \tilde{\Delta}(\{\log(1+|f|)\}^p)(z) \frac{d\nu(z)}{1-|z|^2} + \{\log(1+|f(0)|)\}^p \\ &\leq \|f\|_{N^p(B)}^p \\ &\leq \frac{b_n \Gamma(n)}{2n} \int_B \tilde{\Delta}(\{\log(1+|f|)\}^p)(z) \frac{d\nu(z)}{1-|z|^2} + \int_S \{\log(1+|f_{\frac{1}{2}}|)\}^p d\sigma. \end{split}$$

This proves (a). (b) follows from Lemma 3 and (a). (c) follows from (a) and Corollary 2. Furthermore, (d) follows from (b) and Corollary 2.

REMARK. C. Ouyang and J. Riihentaus proved the following theorem in [12, p.38, Corollary 2]:

THEOREM. Let $\varphi: \mathbb{R} \to \mathbb{R}$ be a nondecreasing, convex function that is bounded from below and differentiable. Let E_{∞} be the set of points t in \mathbb{R} for which $\varphi''(t)$ exists and equal $+\infty$ (and which set is of Lebesgue measure zero). Suppose further that $|\varphi'(E_{\infty})| = 0$. Then a holomorphic function f on B, $f \not\equiv 0$, belongs to the Hardy-Orlicz class $H_{\varphi}(B)$ if

(57)
$$\int_{B} (1 - |z|^{2})^{n} \varphi''(\log |f(z)|) \frac{|\tilde{\nabla}f(z)|^{2}}{|f(z)|^{2}} d\lambda(z) < \infty.$$

The integrand in (57) is defined to be 0 in the case when its expression is not defined.

This result by C. Ouyang-J. Riihentaus is related to our Theorem 2 (b).

References

- [1] F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. 276 (1989), 1–57.
- [2] J. S. Choa and B. R. Choe, A Littlewood-Paley inequality and a characterization of BMOA, Complex Variables Theory Appl. 17 (1991), 15–23.
- [3] J. S. Choa and H. O. Kim, Composition operators on some F-algebras of holomorphic functions, Nihonkai Math. J. 7 (1996), 29-39.
- [4] _____, Composition operators between Nevanlinna-type spaces, J. Math. Anal. Appl. 257 (2001), 378–402.
- [5] B. R. Choe and H. O. Kim, On the boundary behavior of functions holomorphic on the ball, Complex Variables Theory Appl. 20 (1992), 53-61.

- [6] A. E. Djrbashian and F. A. Shamoian, Topics in Theory of A^p_{α} Spaces, Teubner Verlagsgesellschaft, Leipzig, 1988.
- [7] Y. Iida and N. Mochizuki, Isometries of some F-algebras of holomorphic functions, Arch. Math. 71 (1998), 297–300.
- [8] Y. Matsugu, Invariant subspaces of the Privalov spaces, Far East J. Math. Sci. 2 (2000), 633-643.
- [9] Y. Matsugu and J. Miyazawa, A characterization of weighted Bergman-Orlicz spaces on the unit ball in \mathbb{C}^n , J. Austral. Math. Soc. (to appear).
- [10] Y. Matsugu and S. Ueki, Isometries of weighted Bergman-Privalov spases on the unit ball of \mathbb{C}^n , J. Math. Soc. Japan 54 (2002), 341–347.
- [11] N. Mochizuki, Algebras of holomorphic functions between H^p and N_* , Proc. Amer. Math. Soc. 105 (1989), 898–902.
- [12] C. Ouyang and J. Riihentaus, A characterization of Hardy-Orlicz spaces on Cⁿ, Math. Scand. 80 (1997), 25–40.
- [13] C. Ouyang, W. Yang, and R. Zhao, Characterizations of Bergman spaces and Bloch spaces in the unit ball of \mathbb{C}^n , Trans. Amer. Math. Soc. **347** (1995), 4301–4313.
- [14] I. I. Privalov, Boundary Properties of Singled-Valued Analytic Functiones (Russian), Izdat. Moskov. Univ. Moscow, 1941.
- [15] W. Rudin, Function Theory on the Unit Ball of \mathbb{C}^n , Springer-Verlag, Berlin, New York, Heiderberg, 1980.
- [16] S. D. Sharma, J. Raj, and R. Anand, Composition operators on Bergman-Orlicz type spaces, Indian J. Math. 40 (1998), 227-235.
- [17] M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35 (1977), 139-158.
- [18] _____, A characterization of Hardy spaces on the unit ball of \mathbb{C}^n , J. London Math. Soc. 48 (1993), 126–136.
- [19] _____, Invariant Potential Theory in the Unit Ball of \mathbb{C}^n , Cambridge University Press, Cambridge, 1994.
- [20] A. V. Subbotin, Functional properties of Privalov spaces of holomorphic functions in several variables, Math. Notes 65 (1999), 230–237.
- [21] _____, Linear isometry groups of Privalov's spaces of holomorphic functions of several variables, Doklady Math. **60** (1999), 77-79.

Department of Mathematical Sciences
Faculty of Science
Shinshu University
Matsumoto 390-8621, Japan
E-mail: matsugu@math.shinshu-u.ac.jp
sueki@math.shinshu-u.ac.jp