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A CHARACTERIZATION OF
WEIGHTED BERGMAN-PRIVALOV
SPACES ON THE UNIT BALL OF C"

YAsuO MATSUGU, JUN MIYAZAWA, AND SEI-ICHIRO UEKI

ABSTRACT. Let B denote the unit ball in C*, and v the normalized
Lebesgue measure on B. For a > —1, define dva(z) = ca(l —
|2[2)*dv(2), z € B. Here c, is a positive constant such that v, (B)
= 1. Let H(B) denote the space of all holomorphic functions in B.
For p > 1, define the Bergman-Privalov space (AN)?(v,) by

(ANY(v) = {f € H(B) - /B {log(1 + | f)} dva < 00}.

In this paper we prove that a function f € H(B) is in (AN)?(v,) if
and only if (1 + |f]) "2 {log(1 + [f)}* 2|V f|> € L*(vs) in the case
1< p<oo, or (L+ |f)2fI7HIVSI2 € L*(va) in the case p = 1,
where Vf is the gradient of f with respect to the Bergman metric
on B. This is an analogous result to the characterization of the
Hardy spaces by M. Stoll [18] and that of the Bergman spaces by
C. Ouyang-W. Yang-R. Zhao [13].

1. Introduction

Let n > 1 be a fixed integer. Let H(B) denote the space of all holo-
morphic functions in the unit ball B = B,, of the complex n-dimensional
Euclidean space C". Let v denote the normalized Lebesgue measure on
B. For each a € (—1,00), we set co =T'(n+ a+1)/T(n + 1)I(a + 1)
and dv,(2) = co(1 — |2)?)*dv(z), 2z € B. Note that v,(B) = 1. For each
a € (—1,00) and p € [1,00), we define the weighted Bergman-Privalov
space (AN)P(v,) by

(ANP(a)={ 1 € HB) s fllanpion = | [ QostrirDYava] %<oo}.
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In [20], the Privalov space NP(B) (1 < p < oo) is defined by

N?(B) ={f € H(B): Wfliey = 0 [ [tos(1+ lfrl)}”dv]% < oo},

where o is the normalized Lebesgue measure on the unit sphere § = 6B
and fr(z) = f(rz) for 0 < r < 1, z € C* with 7z € B. In the case
n = 1, the space NP(B;) were firstly considered by I. I. Privalov in
(14]. The properties of the spaces NP(B,) (n > 1) were studied in
(3, 4, 5, 7, 8, 11, 17, 20, 21]. As regards the Bergman-Privalov spaces
(AN)P(v), M. Stoll [17, p.157] gave the definition of them in the case
n = 1. The studies on the spaces (AN)P(v) (n > 1) were in [9, 10, 16, 17].

In 1995, C. Ouyang, W. Yang and R. Zhao [13] gave the follow-
ing characterization of the Bergman spaces AP(B) = H(B) N LP(v),
0<p<oo:

TueoreM ([13]). Let f € H(B) and 0 < p < co. Then f € AP(B)
if and only if |f|P~2|Vf|? € L'(v). Here Vf is the gradient of f with
respect to the Bergman metric on B. Moreover, if f € AP(B), then

tim(1 =2 [P AP~ A dul) =0,
T rB

whererB={z€ B : |z|<r},0<r< 1

This characterization of the Bergman spaces is the same type as that
of the Hardy spaces by M. Stoll [18]. The purpose of the present paper
is to give a characterization of the Bergman-Privalov spaces (AN)P(v,,),
1 < p < 00, which is of the M. Stoll-C. Ouyang-W. Yang-R. Zhao’s type.
By taking the limit as & | —1, we also have a characterization of the

Privalov spaces N?(B), 1 < p < oo.

2. Notations

Let M denote the group of biholomorphic maps of B onto itself. For
each a € B, let ¢, € M be the involution described in [15, p.25]. Let A
be the measure on B defined by

1

P = T

dv(z), z € B.
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Then A is the invariant volume measure induced by the Bergman metric

on B. Thus
[rar=[ovar

for each f € L'(\) and all ¢y € M ([15, Theorem 2.2.6]). For f € C?(B)
and a € B, define

Af(@) = —<A(f 042)(0).

Then as in [15, Theorem 4.1.3],

n

- o f
Af(a)= ——=(1~laP) Z —ai%)) 557 (@)

n -+

The operator A is invariant under M, that is, A(fov)) = (Af)o for all
¥ € M ([15, Theorem 4.1.2]). Let V denote the gradient with respect
to the Bergman metric on B ([19, p.27]). Then as in [19, p.30],

2

- Zajéz—j(a) ,a€B.
=1

 An upper semicontinuous function u : B — [—00,00), u # —00, is
said to be M-subharmonic if for each a € B

u(a) < /B u(a(rQ)) do(C), 0 < 7 < 1.

A continuous function u defined in B is said to be M-harmonic if equal-
ity holds in the above inequality. A function u in B is said to be M-
superharmonic if —u is M-subharmonic.

By [19, §6.2], the invariant Green’s function on B is given by G(z,a) =
9{a(2)) for (z,a) € B x B, where

n

@I = — (1 ~laP) Z

n +

n-+1

5 (1 )n—lt—2n+1 dt.

Z

g(z) =

Note that g is M-harmonic in B\ {0}, and M-superharmonic in B. Let
f be an M-subharmonic function in B. The Riesz measure of f is the
non-negative regular Borel measure py in B which satisfies

[ wdus = [ ravar
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for all 1 € C2(B). Here C2(B) is the class of twice continuously differ-
entiable functions in B with compact support. If f is in C?(B), then by
Green’s identity {19, Proposition 3.1] duy = A fdA.

3. Preliminaries

LEMMA 1. Suppose @ € (—1,0), p € [1,00) and f € (AN)P(vy).
Then

im|fr = fllamypa) =0

Proof. (cf. [6, Lemma 1.1]) Pick ¢ > 0. Then there exists an ry €
(0,1) such that

/ {log(1+ | /)P dve <.
B\roB

Since {log(1 + |f])}? is subharmonic in B, for any r € (0,1)
M [ Qg+ IfDPdnzs [ {losl+ )Y dua <.
B\roB B\roB

The uniform continuity of {log(1+|f|)}? on the compact set 9B implies
that

@) lim/ (log(1+ |f» — £)}? dve = 0.
™ JroB
(1) and (2) prove the lemma. O

LEMMA 2. Suppose f € H(B) and p € (1,00). then
(31111 Il canvypwa) = I fllnr(B)-

Proof. (cf. [1, p.25]) First we consider the case ||f||n»(z) < 00. It
follows from the subharmonicity of {log(1 + [f[)}? that || fllanyes) <

| fllne(B)y < oo for any o € (—1,00). Pick € > 0. By [20, Theorem 4], it
holds that

(3) 1}%111 I fr = fllnes) = 0.
By (3), there exists an rg € (0,1) such that for r € [rg, 1)
(4) Ifr = fline(m) <&
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Fix 1 € (rg,1). Since {log(1 + |fr|)}? € C(B), it holds that

(5) o}ilrfll 1Frs “(AN)”(VQ) = “.frl “NP(B).

(See [1, §0.3].) Using (4), we have for a € (~1, 00),

s = Wty = [ {108+ 1oy = S

;‘11 1
:%%<A +é;%%4u-ﬁwﬁ1§%u+mﬂ—ﬁmmw

o

s%mA”WHu—#Vﬁ«mmmwm

1
+ ca2n /mtzn_l(l = ) (I frit = Fllaresy + 17 — fellwpemy)? dt
< (2||fHNP(B))pCa2n/ ‘1—tA)*dt+ (2€)pca2n/ 2 (1 - £7)* de
0 it}
1
2nf(n + o+ 1) {1 _ (1 _ ?)OH—I} + (28);7'
1

T(n+ Dl(a +2)

< Clflinemy)?
Hence
(6) hl’l'islilp “f?"l - f”(AN)p(Va) S 2.

(4), (5) and (6) prove the lemma in the case || f||yr(B) < 00

Suppose now that || f||n»(g) = 00. Pick an arbitrary number M €
(0,00). Then there exists an pg € (0, 1) such that for r € [pg, 1)

/S {log(1 + |£,)} do > 2M.
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Using this, we have for a € (-1, 00)

1
Hﬂﬁﬁwmw)z‘h%ﬂ/73”&0~42Vdr[ﬁbﬂl+LﬂDVda

PO

1
> ca2n/ r2= 1 — 2 dr . 2M
po

PO
=2M {1 — ca2n/ 7‘2"—1(1 — 'r2)°‘ dr}
0

> oM { - g(fﬁ ;-P?;;;) / " - TW}

2nl'(n +a+1)
>2M (1- 1—(1—po)*}).
= ( Tt Dia 1 2) L~ (17 P0) }>
This implies that limy 1 || fll(an)r(ve) = +00 = [ fline(B)- O

By a simple computation we can prove the following lemma and its
corollary.

LEMMA 3. Suppose f € H(B),1<p < oo and € > 0. Then

i b 1 [ qy les+IfD
Ang1+uD}»—2u44ﬂy[@ RRT] ]

x {log(1 + [F)}P2V 2
in B\ Z(f), where Z(f) = {z € B : f(z) =0}, and

A ([og(1+ (£12 +&)V3)]")

= BUSP+ )52+ (P + 01 [log(1 4+ (7 +)V)

<= DIFRE 42 1P 20 (17 4 7
< log(1+ (11 + &/} (911
in B.
COROLLARY 1. Suppose f € H(B) and 1 < p < oo. Then
lim A ([log(1 + (£ +)*)]") = A{log(1 + I£)}?)

in B\ Z(f).
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LEMMA 4. Let f € H(B)\ {0} and 1 < p < co0. Then

() A({log(1 + [F)}?) € L, (V).
(b) digrogirsispye = Al{log(L+ F)})ar

789

Proof. Put v = {log(1 + |f])}? in B. For ¢ € (0,1), let v. be defined

by ve = [(log(1 + (|f)? +£)¥/%))]" in B. And define
pult) = (£ )2 {1+ (£ [~ e + )72
- {t+ 26(1+ (¢ +€)Y/2) Hlog(1 + (¢ +€)V2)}
for t > —e. Then v, € C*°(B) and
(7 ve — v uniformly on compact subsets of B as ¢ | 0.
We can also easily see that

(8) 0<@e(ty<p+2if t>0.
By Lemma 3, (8) and Corollary 1, it holds that for € € (0,1), in B

0< Ao = 2o (15 [log(1 + (£ + /)] 1941

(9 <Pip+2) [log(1 + (1P + )] 9P
and, in B\ Z(f)
(10) 181?01 Av, = Aw.

Since f is holomorphic and f # 0 in B,

(11) AZ(f)) = 0.
By Lemma 3, in B\ Z(f)

_2¢ 2 (+fD*
(12)  {og(1+ 1D 2VIE = o= 1)+ ) Ao.
When 1 < p <2, it follows from (12) that in B\ Z(f)
2 4 ~

(13) {log(1 + /NP IVFI* < (log2)P 2|V fI* +
By (9) and (13), for € € (0,1), in B

(14) 0<Av <

w3

2| 2 4 "
(p+2) | (log2) wa\%z;mm]

- A
p(p—1)+log2 v



790 Yasuo Matsugu, Jun Miyazawa, and Sei-ichiro Ueki

if 1 <p < 2. In the case 2 < p < o0, by (9), for e € (0,1), in B
~ p p—2 .

(15)  0<Au < Zp+2) log(L+(IfP+ DYH] VSR

Let K be any compact subset of B, and let ¢ € C2(B) with ¢ > 0 in
B such that ¢ =1 on K. Using (10), (11), Fatou’s lemma and Green’s
identity, we have

0< / Avd\ < liminf / Av.d) = liminf / YAV, dA
K el0 Ji

(16) < hm 1nf / VAv d)\ = hm 1nf / ve A d.
Since A is a continuous function with compact support in B, by (7)
(17) lim inf / ve A dX = / vApdA < co.

el JB B

(16) and (17) show the assertion (a), that is,
(18) Av e Li,,(\).

In order to prove (b), pick ¢ € C3(B). By (14), (15) and (18), the
functions {Av, : 0 < & < 1} are dominated by a function in L} _()). By
Lebesgue’s dominated convergence theorem, Green’s identity and (7),
we have

/ pAvdX = lim / dAv. d\ = lim / veApd = / vAgdA.

This proves (b). , O

LEMMA 5. Let f be a non-negative measurable function in B. Then
the following inequalities hold:

3 [ £GP dr) /dt/f (1 - 22 dA(z2)
(19) < [ £ - 1P ax)
for all 3 € R. And
1
_ e2\0+1 _ 2\8
200 (1—r?) /TdeASZ/T dt/th(z)(l 1212)8 dA(2)
for all r € (0,1) and 8 € R with 8 > 0.
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Proof. For B € R,

/dt/ F(2)A = |2/*)P dX(z) /f —|2)? 5+1ﬁz—|d)\(z).

Since 3 < 1—_'_1‘;[ <1 for all z € B, we get (19).
Fix r € (0,1) and 8 > 0. Then

-y | RUSCEI / FECEERE®
1
_1-]12\8
(21) <2 / FOCEEREN® / dt.
On the other hand,

[a[ sa-rrae

/f (1 - |22 dA(z /dt+/B\B 2)(1 — |z*)P dA(z) Illdt

/f (1= |2%)% dA(2) /dt

(20) follows from (21) and (22). O

COROLLARY 2. Suppose that f is a non-negative measurable function
in B, # € [0,00) and

(23) /f — |22)PTLdA(2) < .
Then
(24) 13%111 [(1 — )Pl / . f d)\] = 0.

Proof. By (23) and (19), we have

(25) i [ / it /th(z)(l Y d)\(z)] —0

(24) follows from (20) and (25). d
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4. Main results

The proof of the following theorem goes along the same line as that
of C. Ouyang-W. Yang-R. Zhao’s theorem ([13, Theorem 1])

THEOREM 1. Let -1 <a<owand1 <p< oo

(a) Every f € H(B)\ {0} satisfies the following inequalities
ap'(n+a+1) X @
i Tl AR IR =) ()

+ {log(1 + [F(0))}?

< I Ianyp e
5,221 D(n + a + 1)
({log(1 P 1—
(n+a+1)'(a+2) /A{og T+1£DI) ) = [2*)* dv(z)
+ [Qloga + 11,0 o
N
where
. n+1 b 23n—1(n+1)
B TS A TR SV

(b) A function f € H(B)\ {0} is in (AN)P(v,) if and only if
/BA({log(l +17)1P) dva < co.

(c) Suppose 1 < p < oo and f € H(B). Then f € (AN)?P(v,) if and
only if

-2
{log((ll il'.;]l))z}p I £12 dve, < 0.

(d) A function f € H(B) \ {0} is in (AN)!(v,) if and only if

O
/B I+ 7] e <o
(e) If f € (AN)P(vy)\ {0}, then

i [ =2+ [ A(fog(1 -+ 17)1) ] =0

(f) Suppose 1 < p < 00 and f € (AN)P(v,). Then

. 2yntlta {10g1+|f|)}p_2~ 2 _
i [y (e R
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(g) If f€(AN) (va)\ {0}, then

: _ 2\ ntl+tao lﬁfIQ :] —
ity [ =0

Proof. For each € > 0, let
P
ve = [log(1 + (/12 + )]
Then v. € C®(B). For0<d<r<1let Q5. ={2€ B : 0 <|z| <7}
By Green’s formula as in [2, §3.3]

/ﬂ 5 [{g — g(re1)}Ave —v.A{g - g(rel)}] df

/605

where d7 is the volume element on B determined by the Bergman metric,
do is the surface area element on 05, determined by the Bergman
metric, and ;—ﬁ denotes the outward normal differentiation along 0,

with respect to the Bergman metric. Note that A({g — g(re;)}) = 0
in Qs,, g—g(re1) =0onrS={ze€C": |2 =7}, and g — g(re1) =
g(de1) — g(re1) on 4S. Thus

/ {g — g(re1)}Av, d7
Qsr

[{9 - 9(7“61)}%% - ve%{g - g(rel)}] d,

ta

(26)
. Ove . dg . dg ..
= —{g(be1) — g(re1)} o O dés — /TSUE or de, + /55 V5 dcs,
where d&; is the surface area element on tS. By [2, p.18, (6)],
Ly wpn+1)" _wp(n+ 1)
(27)  d7(2) = (1 — [P) dv(z) = o™ d\(z), z€ B,

where w, denotes the Euclidean surface area of S. Since {g — g(re1)}
(Av.) € LY(7) on rB, (27) gives

lim/ {9 — g(re1)}Ave dF = / {g — g(re1)}Av, d7
310 Jqs, rB

(28) - enln 1 / o= glre)}Auedr
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By [2, p.20, (10)],

99  (m+1Y2(1 -
(29) 87 2n 2n—1

By (2, the bottom line of p.19], for t € (0,1) and ¢ € S,

ontS (0<t<1).

O, 2 i 81)5
509 \/ﬁl—tw[;@ H
(30) < —tzf:
j=1

By [2, p.19, (7)], for t € (0,1) and ¢ € S,
wn(n+ 1)n—1/2t2n—1

om0,

(31) d4(t¢) =
By (30) and (31),

{g9(be1) — g(re; }/ Ove — dcs

an(n—f-l)” 152n—1 n
@) < o) [ >

Since limg 62" ~1g(de;) = 0 [19, p.65, (6.6) ] it follows from (32) that

Ove

do(¢).

(33) hm{g(éel) - =0.
Moreover, (29) and (31) give
. Og wp(n+1)"

(34) léllrg ’Us% dos = T”s(o)
and

dyg wp(n+1)"
(35) _ / R /S (ve)y do.
By (26), (28), (33), (34) and (35), we have
(36) / {g — g(re1)}Av. dX = / Ve)r

Since (ve), — {log(1 + |f|)}? uniformly on S as ¢ | 0,
(37) lm /S (v)y do = /S {log(1 + | £,])}? do.
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By (36) and (37),
(38)

i /TB{Q — g(re1)}Av: dA = /s{bg(l + |£1)}P do — {log(1 + | £ (0)])}*
By Corollary 1, Fatou’s lemma and (38),
/ {g—g(re))}YAvd\ < liminf/ {9 — g(re1)}Av, dX
rB el0 JrB
— [{1og(1-+15,)ydo — {log(1-+ FO)))* < o

where v = {log(1 + | f|)}?. Thus
(39) {g — g(re1)}YAv € L*(\,7B).

By (9) and (13) for any € € (0, 1],

2 .
2;(—ij—2){g — g(re1)}Av,

< {g—g(re)} flog(1 + |f NP * |V £

< (o= stren} { Qom2p 917+ 2ot Ao}
(40)

= (log 2P 2[F 1 *{g — glren)} + > : !

pm{g — g(re1)}Av

in 7B\ Z(f), if 1 <p < 2. Since g — g(re1) € L} (), by (39),

<log2)”-2|@f12{g—g<rel>}+§( L (g gren)}(A)

p—1)+log2
(41) e LY(\,rB).

If 2 < p < oo, then for any ¢ € (0, 1],
(42)

oo 7y 9 glren}Ave < {g—g(ren)} [log(1 + (177 + 1)) 1947

in rB\ Z(f). Since g — g(re1) € L} .(N),

(43 {o—glren)} [log(1 + (FP + V3] (941 € L0, 7B).
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By Corollary 1 and (40) ~ (43), we can apply Lebesgue’s dominated

convergence theorem to (38). Hence we have
(44)

/TB{g — g(rel)}Av d\ = 16%1 /TB{g - g(rel)}Ave d\ = /SvT do — v(0).

The left hand side of (44) is

/{g g7‘€1 }A’Ud)\— n+1/ Av d/\/ n 1y=2n+1 gy
|z

= n+1/ (1 —¢H)nlg—2ntl dt/ AvdA
0 tB

2n
1 r ~
(45) >t / (1—t3)"Lat / AvdA.
2n 0 ¢B

On the other hand, for 0 < r < 1, there exists a positive integer k
such that 1/2% <r < 1/2%~1. Thus

n+1

( . A dt/ Avd

0
(46) "“ ( / / ) yn-lym2nl gy / Avdr

cntl /2(1 —tz)”_lt_zn“dt/ Avd\
0 tB

2n
4+ 2 Lokn-) / (1—t5H)n! dt/ Avd
2n 0 ¢B
=L+ L.

47) IL = / {992 }Avd)\ /121 do — v(0) < 0.
Since 2F(2n-1) < 92n—1,.—2n+1

1 r -
48) I < " lom1ami / (1— )" gt / Avdx.
2n 0 ¢B
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By (44) ~ (48) for any r € (0,1)
B2t / (1— 21 / Avdr + v(0)
0 tB
(49) < / vy do,
S

S'ynr’zn"'l/ (1—t2)“_1dt/ Avd/\+/v; do,
0 tB s ?

where 3, = %t and v = Zt1227~1 Note that

1
“fHJ(DAN)p(VQ) :/B{log(1+|f’)}1’dz/a =ca2n/0 7-2"—1(1—7'2)“(17‘/ vedo.

S
It follows from this and (49) that

1 ) 1
Bnca2n/ (1—t2)"_1dt/ Avdk/ (1 —r3)* dr + v(0)
¢B t
(50) < 112 npo o

1 1
< fynca2n/ (1- 2yl dt/ Av d)\/ (1-— r2)* dr + /'v; do.
0 tB t s 2

For o € (—1,00) and t € (0, 1), it holds that

(1 _ t2 1+« 1
————21+a+(1)+ ) < (1- 7'2)“ dr <

where o™ =0if a <0, a+—a1fa>0 By (51),

Bnca2n/ t2)" 1dt/ Av d>\/ — 3 dr

207 (1 — 2)lte

(51) 14«

3

52 > Bpca2n———r— [ (1 —¢2)te / A
(52) > Buc n21+a+(1+a)A( yrte gt tBAvd)\
Qnﬂnc A ! 2
=-—"2 _ | (A — tAynte gy,
21+a+(1+a) B( 'U)(,Z) dA(Z) ]zl(l ) t

Similarly,

1 R 1
'ynca2n/ (1 —t2)n-t dt/ Av d)\/ (1 —r®edr
0 tB ¢

2a+2n'ynca Au)(s p ! _ 2\t
<—————/B(A )(2) dA( )/]zl(l fynta gy

(53) - 1+ a
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Moreover, we can easily show that

1— 2\n+a+1 1 n+o(1 _ 2\n+a+1
mtatl(n + o+ 1) | n+a+1l

z|
for all z € B. By (50), (52), (53) and (54), we obtain

anl'(n+a+1) o
A T B )" () +0(0)

(54)

< Parypy
bn2a+a+r‘(n +a+ 1 .
- (n+a+1DI(a+2) /sz)(l |21) dV(Z)+/Uld0

This proves (a). (b) follows from (a). (c) and (d) follow from Lemma 3
and (b). (e) follows from (b) and Corollary 2. (f) follows from (c) and
Corollary 2. Furthermore, (g) follows from (d) and Corollary 2. 0

THEOREM 2. Suppose 1 < p < 0.
(a) A function f € H(B)\ {0} is in NP(B) if and only if
/ A({log(1 + 1/)Y")(2) d”(,jz
(b) For f € H(B), f € NP(B) if and only if
{log(1 + |/ (2)D)}*~? & dv(z)
s arlrape T
(c) If f € NP(B)\ {0}, then
i [ (1= [ AQog+ 1717 da| =0
(d) If f € NP(B), then

1' 1__ 2\n
(g

flog(L+ 1/DY2 w0 ]
s axe v dA]‘O‘

Proof. Let f € H(B)\{0}. The monotone convergence theorem gives
tim, [ Aog(1+ DY) — 2 dv(2)
(55) = [ Btqiog (1 + 1D ~ 1) dv(e)
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And note that
'n+a+1) _ 2I(n)
(56) ll 12006t (n + o+ D)D(a4+2)  n
By Theorem 1(a), Lemma 2, (55) and (56), we have
20 [ Aiog( + F)P)e) T s + (o1 +1£ODY
< “f“NP(B)

b F(n

| Adttoga 170176255 + [ tog(a +17, Dy o

This proves (a). (b) follows from Lemma 3 and (a). (c) follows from (a)
and Corollary 2. Furthermore, (d) follows from (b) and Corollary 2. O

REMARK. C. Ouyang and J. Riihentaus proved the following theorem
in [12, p.38, Corollary 2J:

THEOREM. Let ¢ : R — R be a nondecreasing, convex function that
is bounded from below and differentiable. Let E, be the set of points t
in R for which ¢ (t) exists and equal +oco (and which set is of Lebesgue
measure zero). Suppose further that |¢'(E )| = 0. Then a holomorphic
function f on B, f # 0, belongs to the Hardy-Orlicz class Hy(B) if

TN Ok
(57) Lu 49" (lo8 £ () 7

The integrand in (57) is defined to be 0 in the case when its expression
is not defined.

dA(z) < oo.

This result by C. Ouyang-J. Riihentaus is related to our Theorem 2

(b).
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