• 제목/요약/키워드: Benzylamines

검색결과 41건 처리시간 0.022초

Kinetics and Mechanism of the Addition of Benzylamines to Benzylidene Meldrum's Acids in Acetonitrile

  • Oh, Hyuck-Keun;Kim, Tae-Soo;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권2호
    • /
    • pp.193-196
    • /
    • 2003
  • Nucleophilic addition reactions of benzylamines $(XC_6H_4CH_2NH_2)$ to benzylidene Meldrum's acids (BMA; $YC_6H_4CH=C(COO)_2C(CH_3)_2$) have been investigated in acetonitrile at 20.0 ℃. The rates of addition are greatly enhanced due to the abnormally high acidity of Meldrum's acid. The magnitudes of the Hammett $({\rho}_X\;and\;{\rho}_Y)$ and Bronsted $({\rho}_X$)$ coefficients are rather small suggesting an early transition state. The sign and magnitude of the cross-interaction constant, ${\rho}_{XY}$ (= -0.33), and kinetic isotope effects $(k_H/k_D\;{\stackrel}{~}{=}\;1.5-1.7)$ involving deuterated benzylamine nucleophilies $(XC_6H_4CH_2ND_2)$ are indicative of hydrogen-bonded cyclic transition state. The activation parameters, ${\Delta}H^{\neq}\;{\stackrel}{~}{=}\;4\;kcal\;mol^{-1}\;and\;{\Delta}S^{\neq}\;{\stackrel}{~}{=}\;-37\;e.u.$, are also in line with the proposed mechanism.

Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4304-4308
    • /
    • 2011
  • Kinetic studies of the reactions of O,O-dimethyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at $85.0^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Br$\ddot{o}$nsted [log $k_2$ vs $pK_a$(X)] plots for substituent X variations in the nucleophiles are discrete with a break region between 4-Me and H, while the Hammett plots (log $k_2$ vs ${\sigma}_Z$) for substituent Z variations in the leaving groups are linear. The sign of the cross-interaction constant (${\rho}_{XZ}$) is positive for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ (= 2.54) value is observed with the weakly basic nucleophiles compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = 0.17). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a stepwise with a rate-limiting leaving group expulsion from the intermediate involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles.

Kinetics and Mechanism of the Aminolysis of Phenacyl Bromides in Acetonitrile. A Stepwise Mechanism with Bridged Transition State

  • Lee, Ik-Choon;Lee, Hai-Whang;Yu, Young-Kab
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.993-998
    • /
    • 2003
  • In the aminolysis of phenacyl bromides ($YC_6H_4COCH_2Br$) with benzylamines ($XC_6H_4CH_2NH_2$) in acetonitrile, the Bronsted βx (βnuc) values observed are rather low ( βX = 0.69-0.73). These values are similar to those (βx $^~_=$ 0.7) for other aminolysis reactions of phenacyl compounds with anilines and pyridines, but are much smaller than those ( βx = 1.1-2.5) for the aminolysis of esters with benzylamines which are believed to proceed stepwise with rate-limiting expulsion of the leaving group. The relative constancy of the βx values (βx $^~_=$ 0.7) irrespective of the amine, leaving group and solvent can be accounted for by a bridged type transition state in the rate-limiting expulsion of the leaving group. Thus the aminolysis of phenacyl derivatives are proposed to proceed stepwise through a zwitterionic tetrahedral intermediate ($T^{\pm}$), with rate-limiting expulsion of the leaving group from $T^{\pm}$. In the transition state, the amine is bridged between the carbonyl and α-carbons, which leads to negligible effect of amine on the leaving group expulsion rate.

Kinetics and Mechanism of the Addition of Benzylamines to α-Cyano-β-phenylacrylamides in Acetonitrile

  • Oh, Hyuck-Keun;Ku, Myoung-Hwa;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권6호
    • /
    • pp.935-938
    • /
    • 2005
  • Nucleophilic addition reactions of benzylamines (BA; $XC_6H_4CH_2NH_2$) to $\alpha-cyano-\beta$-phenylacrylamides (CPA; $YC_6H_4CH=C(CN)CONH_2$) have been investigated in acetonitrile at 25.0 ${^{\circ}C}$. The rate is first order with respect to BA and CPA and no base catalysis is observed. The addition of BA to CPA occurs in a single step in which the addition of BA to $C_{\beta}$ of CPA and proton transfer from BA to $C_{\alpha}$ of CPA take place concurrently with a four-membered cyclic transition state structure. The magnitude of the Hammett ($\rho_X$) and Bronsted ($\beta_X$) coefficients are rather small suggesting an early tansition state (TS). The sign and magnitude of the crossinteraction constant, $\rho_XY$ (= −D0.26), is comparable to those found in the normal bond formation processes in the $S_N2$ and addition reactions. The normal kinetic isotope effect ($k_H/k_D\;{\gt}$ 1.0) and relatively low ${\Delta}H^{\neq}$ and large negative ${\Delta}S^{\neq}$ values are also consistent with the mechanism proposed.

Kinetics and Mechanism of Aminolysis of Phenyl Benzoates in Acetonitrile

  • 고한중;이호찬;이해황;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권9호
    • /
    • pp.839-844
    • /
    • 1995
  • The kinetics and mechanism of the reactions of phenyl benzoates with benzylamines and pyrrolidine are investigated in acetonitrile. The variations of ρX (ρXY>0) and ρZ (ρYZ<0) with respect to the substituent in the substrate (σY) indicate that the reactions proceed through a tetrahedral intermediate, T±, with its breakdown in the rate determining step. The large magnitudes of ρZ, ρXY and ρYZ as well as the effects of secondary kinetic isotope effects involving deuterated nucleophiles are also in line with the proposed mechanism.

Kinetics and Mechanism of the Addition of Benzylamines to β-Cyanostilbenes in Acetonitrile

  • Oh, Hyuck-Keun;Kim, In-Kon;Sung, Dae-Dong;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.641-644
    • /
    • 2005
  • Nucleophilic addition reactions of benzylamines $(XC_6H_4CH_2NH_2)\;to\;{\beta}$-cyanostilbenes ($YC_6H_4CH=C(CN)C_6H_4$Y’) have been studied in acetonitrile at 30.0 oC. A greater degree of N-$C_{\alpha}$ bond formation (larger ${\beta}_X$) is obtained with a stronger electron-withdrawing substituent in either ${\alpha}-\;(\delta\sigma_Y\;{\gt}\;0)\;or\;{\beta}-ring\;(\delta\sigma_{Y'}\;{\gt}$ 0). A stronger charge development is observed in the TS on $C_{\beta}\;(\rho_{Y'}$= 1.06 for X=Y=H) rather than on $C_{\alpha}\;(\rho_{Y}$ = 0.62 for X=Y’H) indicating the lag in the resonance development into the activating group (CN) on $C_{\beta}$ in the transition state. Similarly, the magnitude of $\rho$$_{XY'}$(−0.72) is greater than $\rho_{XY}$ (−0.66) due to a stronger interaction of the nucleophile with $\beta$-ring than $\alpha$-ring. The positive sign of $\rho_{YY'}$correctly reflects $\pi$ bond cleavage between the two rings in the TS. Relatively large kinetic isotope effects ($k_H/k_D\;{\geq}$ 2.0) involving deuterated nucleophiles ($XC_6H_4CH_2ND_2$) suggest a four-membered cyclic TS in which concurrent N-C$_{\alpha}$ and H(D)-C$_{\beta}$ bond formation occurs.

Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.857-862
    • /
    • 2011
  • Kinetic studies of the reactions of N-methyl-Y-${\alpha}$-bromoacetanilides with substituted X-benzylamines have been carried out in dimethyl sulfoxide at $25.0^{\circ}C$. The Hammett plots for substituent X variations in the nucleophiles (log $k_N$ vs ${\sigma}_X$) are slightly biphasic concave upwards/downwards, while the Bronsted plots (log $k_N$ vs $pK_a$) are biphasic concave downwards with breakpoints at X = H. The Hammett plots for substituent Y variations in the substrates (log $k_N$ vs ${\sigma}_Y$) are biphasic concave upwards/downwards with breakpoints at Y = H. The cross-interaction constant $\rho_{XY}$ values are all negative: $\rho_{XY}$ = -0.32 for X = Y = electron-donating; -0.22 for X = electron-withdrawing and Y = electron-donating; -1.80 for X = electron-donating and Y = electronwithdrawing; -1.43 for X = Y = electron-withdrawing substituents. Deuterated kinetic isotope effects are primary normal ($k_H/k_D$ > 1) for Y = electron-donating, while secondary inverse ($k_H/k_D$ < 1) for Y = electronwithdrawing substituent. The proposed mechanisms of the benzylaminolyses of N-methyl-Y-${\alpha}$-bromoacetanilides are a concerted mechanism with a five membered ring TS involving hydrogen bonding between hydrogen (deuterium) atom in N-H(D) and oxygen atom in C = O for Y = electron-donating, while a concerted mechanism with an enolate-like TS in which the nucleophile attacks the ${\alpha}$-carbon for Y = electronwithdrawing substituents.

Kinetics and Mechanism of the Aminolysis of O-Methyl S-Aryl Thiocarbonates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1539-1542
    • /
    • 2011
  • The aminolysis of O-methyl S-aryl thiocarbonates with benzylamines are studied in acetonitrile at -45.0$^{\circ}C$. The ${\beta}_X$(${\beta}_{nuc}$) values are in the range 0.62-0.80 with a negative cross-interaction constant, ${\rho}_{XZ}$ = -0.42, which are interpreted to indicate a concerted mechanism. The kinetic isotope effects involving deuterated benzylamine nucleophiles ($XC_6H_4CH_2ND_2$) are large, $k_H/k_D$ = 1.29-1.75, suggesting that the N-H(D) bond is partially broken in the transition state by forming a hydrogen-bonded four-center cyclic structure. The concerted mechanism is enforced by the strong push provided by the MeO group which enhances the nucleofugalities of both benzylamine and arenethiolate from the putative zwitterionic tetrahedral intermediate.

Kinetics and Mechanism of the Aminolysis of O-Methyl-S-Phenylthiocarbonates in Methanol

  • Song, Ho-Bong;Choi, Moon-Ho;Koo, In-Sun;Oh, Hyuck-Keun;Lee, Ik-choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.91-94
    • /
    • 2003
  • Kinetic studies of the reaction of O-methyl-S-phenylthiocarbonates with benzylamines in methanol at 45.0 ℃ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic tetrahedral intermediate, $T^{\pm}$, with a hydrogen-bonded four-center type transition state (TS). These mechanistic conclusions are drawn based on (ⅰ) the large magnitude of ${\rho}_X\;and\;{\rho}_Z$, (ⅱ) the normal kinetic isotope effects $(k_H/k_D\;>\;1.0)$ involving deuterated benzylamine nucleophiles, (ⅲ) the positive sign of ${\rho}_{XZ}$ and the larger magnitude of ${\rho}_{XZ}$ than that for normal $S_N2$ processes, and lastly (ⅳ) adherence to the reactivity-selectivity principle (RSP) in all cases.