Browse > Article
http://dx.doi.org/10.5012/bkcs.2005.26.4.641

Kinetics and Mechanism of the Addition of Benzylamines to β-Cyanostilbenes in Acetonitrile  

Oh, Hyuck-Keun (Department of Chemistry, Research Center of Bioactive Materials, Chonbuk National University)
Kim, In-Kon (Department of Chemistry, Research Center of Bioactive Materials, Chonbuk National University)
Sung, Dae-Dong (Department of Chemistry, Dong-A University)
Lee, Ik-Choon (Department of Chemistry, Dong-A University)
Publication Information
Abstract
Nucleophilic addition reactions of benzylamines $(XC_6H_4CH_2NH_2)\;to\;{\beta}$-cyanostilbenes ($YC_6H_4CH=C(CN)C_6H_4$Y’) have been studied in acetonitrile at 30.0 oC. A greater degree of N-$C_{\alpha}$ bond formation (larger ${\beta}_X$) is obtained with a stronger electron-withdrawing substituent in either ${\alpha}-\;(\delta\sigma_Y\;{\gt}\;0)\;or\;{\beta}-ring\;(\delta\sigma_{Y 0). A stronger charge development is observed in the TS on $C_{\beta}\;(\rho_{Y= 1.06 for X=Y=H) rather than on $C_{\alpha}\;(\rho_{Y}$ = 0.62 for X=Y’H) indicating the lag in the resonance development into the activating group (CN) on $C_{\beta}$ in the transition state. Similarly, the magnitude of $\rho$$_{XY(−0.72) is greater than $\rho_{XY}$ (−0.66) due to a stronger interaction of the nucleophile with $\beta$-ring than $\alpha$-ring. The positive sign of $\rho_{YYcorrectly reflects $\pi$ bond cleavage between the two rings in the TS. Relatively large kinetic isotope effects ($k_H/k_D\;{\geq}$ 2.0) involving deuterated nucleophiles ($XC_6H_4CH_2ND_2$) suggest a four-membered cyclic TS in which concurrent N-C$_{\alpha}$ and H(D)-C$_{\beta}$ bond formation occurs.
Keywords
Nucleophilic addition; $\beta$-Cyanostilbene; Cross-interaction constant; Kinetic isotope effects; Concerted mechanism;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301   DOI
2 Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2000, 101
3 Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 5391   DOI   ScienceOn
4 Oh, H. K.; Kim, I. K.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2004, 2, 1213   DOI   ScienceOn
5 Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
6 Lee, I. Chem. Soc. Rev. 1990, 19, 317   DOI
7 Bernasconi, C. F. Tetrahedron 1989, 45, 4017   DOI   ScienceOn
8 Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54
9 Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529   DOI   ScienceOn
10 Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F.; Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Chapter 4
11 Spillane, W. J.; Hogan, G.; McGrath, G. P.; King, J.; Brack, C. J. Chem. Soc. Perkin Trans. 2 1996, 2099
12 Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302   DOI   ScienceOn
13 Ruasse, M.-F. Adv. Phys. Org. Chem. 1993, 28, 207
14 Lee, I.; Park, Y. K.; Huh, C.; Lee, H. W. J. Phys. Org. Chem. 1994, 7, 555   DOI   ScienceOn
15 Lee, I. Chem. Soc. Rev. 1995, 24, 223   DOI
16 Melander, L.; Saunders, W. H. Jr. Reaction Rates of Isotopic Molecules; Wiley: New York; 1980; Chapter 5
17 Oh, H. K.; Lee, J. M.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2004, 25, 557   DOI   ScienceOn
18 Kroeger, D. J.; Stewart, R. Can. J. Chem. 1967, 45, 2163   DOI
19 Oh, H. K.;Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188   DOI   ScienceOn
20 Oh, H. K.; Park, J. E.; Lee, H. W. Bull. Korean Chem. Soc. 2004, 25, 1041   DOI   ScienceOn
21 Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2002, 282
22 Schonne, A.; Braye, E.; Braylauts, A. Bull. Soc. Chim. Belg. 1953, 62, 155   DOI