Browse > Article
http://dx.doi.org/10.5012/bkcs.2005.26.6.935

Kinetics and Mechanism of the Addition of Benzylamines to α-Cyano-β-phenylacrylamides in Acetonitrile  

Oh, Hyuck-Keun (Department of Chemistry, Research Center of Bioactive Materials, Chonbuk National University)
Ku, Myoung-Hwa (Department of Chemistry, Research Center of Bioactive Materials, Chonbuk National University)
Lee, Hai-Whang (Department of Chemistry, Inha University)
Publication Information
Abstract
Nucleophilic addition reactions of benzylamines (BA; $XC_6H_4CH_2NH_2$) to $\alpha-cyano-\beta$-phenylacrylamides (CPA; $YC_6H_4CH=C(CN)CONH_2$) have been investigated in acetonitrile at 25.0 ${^{\circ}C}$. The rate is first order with respect to BA and CPA and no base catalysis is observed. The addition of BA to CPA occurs in a single step in which the addition of BA to $C_{\beta}$ of CPA and proton transfer from BA to $C_{\alpha}$ of CPA take place concurrently with a four-membered cyclic transition state structure. The magnitude of the Hammett ($\rho_X$) and Bronsted ($\beta_X$) coefficients are rather small suggesting an early tansition state (TS). The sign and magnitude of the crossinteraction constant, $\rho_XY$ (= −D0.26), is comparable to those found in the normal bond formation processes in the $S_N2$ and addition reactions. The normal kinetic isotope effect ($k_H/k_D\;{\gt}$ 1.0) and relatively low ${\Delta}H^{\neq}$ and large negative ${\Delta}S^{\neq}$ values are also consistent with the mechanism proposed.
Keywords
Nucleophilic addition reaction; Single-step process; Cross-interaction constant; Kinetic isotope effect; Four-center cyclic transition state;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 101
2 Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188   DOI   ScienceOn
3 Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 5391   DOI   ScienceOn
4 Oh, H. K.; Lee, J. M. Bull. Korean Chem. Soc. 2002, 23, 1459   DOI   ScienceOn
5 Bernasconi, C. F. Tetrahedron 1989, 45, 4017   DOI   ScienceOn
6 Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301   DOI
7 Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
8 Lee, I.; Lee, H. W. Coll. Czech. Chem. Commun. 1999, 64, 1529   DOI   ScienceOn
9 Lee, I. Chem. Soc. Rev. 1990, 19, 317   DOI
10 Oh, H. K.; Kim, T. S.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 193   DOI   ScienceOn
11 Lee, I. Chem. Soc. Rev. 1995, 24, 223   DOI
12 Song, H. B.; Choi, M. H.; Koo, I. S.; Oh, H. K.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 91   DOI   ScienceOn
13 Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165   DOI
14 Fischer, A.; Galloway, W. J.; Vaughan, J. J. Chem. Soc. 1964, 3588   DOI
15 Oh, H. K.; Lee, J. Y.; Lee, I. Bull. Korean Chem. Soc. 1988, 19, 1198
16 Wiberg, K. B. Physical Organic Chemistry; Wiley: New York: 1964; p 378
17 Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2004, 69, 3806   DOI   ScienceOn
18 Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. Org. Biomol. Chem. 2004, 2, 1213   DOI   ScienceOn
19 Zabicky, J. J. Chem. Soc. 1961, 683   DOI
20 Oh, H. K.; Lee, J. M.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2004, 25, 557   DOI   ScienceOn
21 Oh, H. K.; Park, J. E.; Lee, H. W. Bull. Korean Chem. Soc. 2004, 25, 1041   DOI   ScienceOn
22 Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302   DOI   ScienceOn
23 Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 221   DOI   ScienceOn
24 Bernasconi, C. F.; Ketner, R. J. J. Org. Chem. 1998, 63, 6266   DOI   ScienceOn