DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Aminolysis of Phenacyl Bromides in Acetonitrile. A Stepwise Mechanism with Bridged Transition State

  • Published : 2003.07.20

Abstract

In the aminolysis of phenacyl bromides ($YC_6H_4COCH_2Br$) with benzylamines ($XC_6H_4CH_2NH_2$) in acetonitrile, the Bronsted βx (βnuc) values observed are rather low ( βX = 0.69-0.73). These values are similar to those (βx $^~_=$ 0.7) for other aminolysis reactions of phenacyl compounds with anilines and pyridines, but are much smaller than those ( βx = 1.1-2.5) for the aminolysis of esters with benzylamines which are believed to proceed stepwise with rate-limiting expulsion of the leaving group. The relative constancy of the βx values (βx $^~_=$ 0.7) irrespective of the amine, leaving group and solvent can be accounted for by a bridged type transition state in the rate-limiting expulsion of the leaving group. Thus the aminolysis of phenacyl derivatives are proposed to proceed stepwise through a zwitterionic tetrahedral intermediate ($T^{\pm}$), with rate-limiting expulsion of the leaving group from $T^{\pm}$. In the transition state, the amine is bridged between the carbonyl and α-carbons, which leads to negligible effect of amine on the leaving group expulsion rate.

Keywords

References

  1. Dewar, M. J. S. The Electronic Theory of Organic Chemistry;Oxford University Press: Oxford, 1949; p 73.
  2. McLennan, D.J.; Pross, A. J. Chem. Soc., Perkin Trans. 2 1984, 981.
  3. Pross,A.; Aviram, K.; Klix, R. C.; Kost, D.; Bach, R. D. New J. Chem.1984, 8, 711.
  4. Shaik, S. S. J. Am. Chem. Soc. 1983, 105, 4359. https://doi.org/10.1021/ja00351a039
  5. Pross, A.; De Frees, D. J.; Levi, B. A.; Pollack, S. K.; Radom,L.; Hehre, W. J. J. Org. Chem. 1981, 46, 1693. https://doi.org/10.1021/jo00321a034
  6. Kost, D.;Aviram, K. Tetrahedron Lett. 1982, 23, 4157. https://doi.org/10.1016/S0040-4039(00)88374-4
  7. Wolfe, S.;Mitchell, D. J.; Schlegel, H. B. Can. J. Chem. 1982, 60, 1291. https://doi.org/10.1139/v82-190
  8. Conant, J. B.; Kirner, W. R. J. Am. Chem. Soc. 1924, 46, 232. https://doi.org/10.1021/ja01666a031
  9. Ross, S. D.; Finkelstein, M.; Petersen, R. C. J. Am. Chem. Soc.1968, 90, 6411. https://doi.org/10.1021/ja01025a029
  10. Halvorsen, A.; Songstad, J. J. Chem. Soc.,Chem. Commun. 1978, 327.
  11. Bartlett, P. D.; Trachtenberg, E. N.J. Am. Chem. Soc. 1958, 80, 15808.
  12. Thorpe, J. W.; Warkentin,J. Can. J. Chem. 1973, 51, 927. https://doi.org/10.1139/v73-137
  13. Bordwell, F. G.; Brannen, W. T.J. Am. Chem. Soc. 1964, 86, 4645. https://doi.org/10.1021/ja01075a025
  14. Bunton, C. A. Nucleophilic Substitution at a Saturated CarbonAtom; Elsevier: London, 1963; p 35.
  15. Winstein, S.; Grunwald,E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  16. Streitwieser, A., Jr. Solvolytic Displacement Reactions; McGraw-Hill: New York, 1962.
  17. Yousaf, T. I.; Lewis, E. S. J. Am. Chem. Soc. 1987, 109, 6137. https://doi.org/10.1021/ja00254a038
  18. Forster, W.; Laird, R. M. J. Chem. Soc., Perkin Trans. 2 1982,135.
  19. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000,65, 4706. https://doi.org/10.1021/jo000411y
  20. Lee, K. S.; Adhikary, K. K.; Lee, H. W.; Lee, B.-S.;Lee, I. Org. Biomol. Chem. 2003, 1, 1989. https://doi.org/10.1039/b300477e
  21. Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985.
  22. Lee, I.; Lee,H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  23. Yew,K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans.2 1995, 2263.
  24. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  25. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y.B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  26. Coetzee, J. F. Prog.Phys. Org. Chem. 1965, 4, 45.
  27. Lee, I.; Shim, C. S.; Lee, H. W. J. Phys. Org. Chem. 1989, 2, 484. https://doi.org/10.1002/poc.610020607
  28. Lee, I.; Shim, C. S.; Chung, S. Y.; Lee, H. W. J. Chem. Soc.,Perkin Trans. 2 1988, 975.
  29. Oh, H. K.; Yang, J. H.; Lee, I. Bull. Korean Chem. Soc. 1999,20, 1418.
  30. Oh, H. K.; Yang, J. H.; Cho, I. H.; Lee, H. W.; Lee, I.Int. J. Chem. Kinet. 2000, 32, 485. https://doi.org/10.1002/1097-4601(2000)32:8<485::AID-KIN6>3.0.CO;2-X
  31. Lee, I.; Koh, H. J. New J.Chem. 1996, 20, 131.
  32. Oh, H. K.; Kim, S. K.; Lee, I. Bull.Korean Chem. Soc. 1999, 20, 1017. https://doi.org/10.1007/BF02706930
  33. Koh, H.; Lee, J.-W.; Lee,H. W.; Lee, I. New J. Chem. 1997, 21, 447.
  34. Oh, H. K.; Lee, J.Y.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 1198.
  35. Oh, H. K.;Woo, S. Y.; Shin, C. H.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 849. https://doi.org/10.1002/(SICI)1097-4601(1998)30:11<849::AID-KIN7>3.0.CO;2-V
  36. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001,25, 313. https://doi.org/10.1039/b006974o
  37. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J.Chem. Soc., Perkin Trans. 2 2000, 2306.
  38. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org.Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  39. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee,I. J. Chem. Soc., Perkin Trans. 2 2001, 1753.
  40. Oh, H. K.; Shin,C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 1169.
  41. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002,67, 3874. https://doi.org/10.1021/jo025637a
  42. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999,64, 4783. https://doi.org/10.1021/jo990115p
  43. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org.Chem. 2002, 67, 8995. https://doi.org/10.1021/jo0264269
  44. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970. https://doi.org/10.1021/ja00463a033
  45. Pross, A. Theoretical and Physical Principles of OrganicReactivity; Wiley: New York, 1995; Chapter 8.
  46. Fleming, I. Frontier Orbitals and Organic ChemicalReactions; Wiley: London, 1976.
  47. Lee, I.; Kim, C. K.; Li, H.G.; Sohn, C. K.; Kim, C. K.; Lee, B.-S. J. Am. Chem. Soc. 2000,122, 11162. https://doi.org/10.1021/ja001814i
  48. Epiotis, N. D.; Cherry, W. R.; Shaik, S.; Yates, R.; Bernardi, F.Structural Theory of Organic Chemistry; Springer-Verlag: Berlin,1977.
  49. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,899. https://doi.org/10.1021/cr00088a005
  50. Brunck, T. K.; Weinhold, F. J. Am. Chem. Soc. 1979, 101,1700. https://doi.org/10.1021/ja00501a009
  51. Deslongchamps, P. Stereoelectronic Effects in OrganicChemistry; Pergamon Press: Oxford, 1983.
  52. Kirby, A. J. TheAnomeric Effect and Related Stereoelectronic Effects at Oxygen;Springer-Verlag: Berlin, 1983.
  53. Page, I.; Williams, A. ConertedOrganic and Bio-Organic Mechanisms; CRC Press: Boca Raton,2000; p 111.
  54. Page, I.; Williams, A. Organic and Bio-OrganicMechanisms; Longman: Harlow, 1977; p 42.
  55. Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334. https://doi.org/10.1021/ja01607a027
  56. Dewar, M. J. S.; Dougherty, R. C. ThePMO Theory of Organic Chemistry; Plenum: New York, 1975;Chapter 5.
  57. Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69. https://doi.org/10.1016/S0065-3160(08)60108-2
  58. Buncel, E.;Wilson, H. J. Chem. Educ. 1987, 64, 475. https://doi.org/10.1021/ed064p475
  59. Klumpp, G. W. Reactivity in Organic Chemistry; Wiley: NewYork, 1982; p 310.
  60. Lee, I.; Lee, B.-S.; Koh, H. J.; Chang, B. D. Bull. Korean Chem.Soc. 1995, 16, 277.
  61. Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985.
  62. Kim, T.-H.;Huh, C.; Lee, B.-S.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995,2257.
  63. Koh, H. J.; Kim, O. S.; Lee, H. W.; Lee, I. J. Phys. Org.Chem. 1997, 10, 725. https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<725::AID-POC943>3.0.CO;2-X
  64. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee,I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  65. Lee, I.; Koh, H. J. New J. Chem. 1996, 20, 131.
  66. Koh, H. J.;Lee, H. C.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1995, 16,839.
  67. Lee, I. Chem. Soc. Rev. 1994, 24, 223. https://doi.org/10.1039/cs9952400223
  68. Bull. Korean Chem. Soc. v.15 Lee, I.

Cited by

  1. Enthalpy-Entropy Correlations in Reactions of Aryl Benzoates with Potassium Aryloxides in Dimethylformamide vol.45, pp.4, 2013, https://doi.org/10.1002/kin.20763
  2. Bromo–nitro substitution on a tertiary α carbon—a previously uncharacterized facet of the Kornblum substitution vol.5, pp.93, 2015, https://doi.org/10.1039/C5RA14798K
  3. Mechanism of the reaction of neutral and anionic N-nucleophiles with α-halocarbonyl compounds vol.56, pp.6, 2007, https://doi.org/10.1007/s11172-007-0182-1
  4. Mechanism of nucleophilic substitutions at phenacyl bromides with pyridines. A computational study of intermediate and transition state vol.21, pp.11, 2008, https://doi.org/10.1002/poc.1412
  5. Nucleophilic Substitution Reactions of α-Chloroacetanilides with Pyridines in Dimethyl Sulfoxide vol.26, pp.5, 2003, https://doi.org/10.5012/bkcs.2005.26.5.776
  6. Nucleophilic Substitution Reactions of α-Bromoacetanilides with Benzylamines vol.29, pp.1, 2003, https://doi.org/10.5012/bkcs.2008.29.1.191
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. A Kinetic Study on Aminolysis of S-4-Nitrophenyl Thiobenzoate in H2O Containing 20 mol % DMSO and 44 wt % EtOH: Effect of Medium on Reactivity and Mechanism vol.30, pp.1, 2003, https://doi.org/10.5012/bkcs.2009.30.1.214
  9. Piperidinolysis of 4-Nitrophenyl X-Substituted Benzenesulfonates and Related Compounds: Effect of Changing Leaving Group and Electrophilic Center vol.31, pp.1, 2003, https://doi.org/10.5012/bkcs.2010.31.01.234
  10. Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide vol.32, pp.3, 2003, https://doi.org/10.5012/bkcs.2011.32.3.857
  11. Kinetic studies of the reaction of phenacyl bromide derivatives with sulfur nucleophiles vol.25, pp.4, 2003, https://doi.org/10.1002/poc.1921