DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Addition of Benzylamines to α-Cyano-β-phenylacrylamides in Acetonitrile

  • Oh, Hyuck-Keun (Department of Chemistry, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Ku, Myoung-Hwa (Department of Chemistry, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Lee, Hai-Whang (Department of Chemistry, Inha University)
  • Published : 2005.06.20

Abstract

Nucleophilic addition reactions of benzylamines (BA; $XC_6H_4CH_2NH_2$) to $\alpha-cyano-\beta$-phenylacrylamides (CPA; $YC_6H_4CH=C(CN)CONH_2$) have been investigated in acetonitrile at 25.0 ${^{\circ}C}$. The rate is first order with respect to BA and CPA and no base catalysis is observed. The addition of BA to CPA occurs in a single step in which the addition of BA to $C_{\beta}$ of CPA and proton transfer from BA to $C_{\alpha}$ of CPA take place concurrently with a four-membered cyclic transition state structure. The magnitude of the Hammett ($\rho_X$) and Bronsted ($\beta_X$) coefficients are rather small suggesting an early tansition state (TS). The sign and magnitude of the crossinteraction constant, $\rho_XY$ (= −D0.26), is comparable to those found in the normal bond formation processes in the $S_N2$ and addition reactions. The normal kinetic isotope effect ($k_H/k_D\;{\gt}$ 1.0) and relatively low ${\Delta}H^{\neq}$ and large negative ${\Delta}S^{\neq}$ values are also consistent with the mechanism proposed.

Keywords

References

  1. Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 101
  2. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188 https://doi.org/10.1021/jo991823d
  3. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 5391 https://doi.org/10.1021/jo000512w
  4. Oh, H. K.; Lee, J. M. Bull. Korean Chem. Soc. 2002, 23, 1459 https://doi.org/10.5012/bkcs.2002.23.10.1459
  5. Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2004, 69, 3806 https://doi.org/10.1021/jo034370s
  6. Bernasconi, C. F. Tetrahedron 1989, 45, 4017 https://doi.org/10.1016/S0040-4020(01)81304-1
  7. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301 https://doi.org/10.1021/ar00140a006
  8. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
  9. Lee, I.; Lee, H. W. Coll. Czech. Chem. Commun. 1999, 64, 1529 https://doi.org/10.1135/cccc19991529
  10. Lee, I. Chem. Soc. Rev. 1990, 19, 317 https://doi.org/10.1039/cs9901900317
  11. Oh, H. K.; Kim, T. S.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 193 https://doi.org/10.5012/bkcs.2003.24.2.193
  12. Lee, I. Chem. Soc. Rev. 1995, 24, 223 https://doi.org/10.1039/cs9952400223
  13. Song, H. B.; Choi, M. H.; Koo, I. S.; Oh, H. K.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 91 https://doi.org/10.5012/bkcs.2003.24.1.091
  14. Oh, H. K.; Lee, J. M.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2004, 25, 557 https://doi.org/10.5012/bkcs.2004.25.4.557
  15. Oh, H. K.; Park, J. E.; Lee, H. W. Bull. Korean Chem. Soc. 2004, 25, 1041 https://doi.org/10.5012/bkcs.2004.25.7.1041
  16. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302 https://doi.org/10.1021/jp991115w
  17. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 221 https://doi.org/10.5012/bkcs.2002.23.2.221
  18. Bernasconi, C. F.; Ketner, R. J. J. Org. Chem. 1998, 63, 6266 https://doi.org/10.1021/jo980574a
  19. Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. Org. Biomol. Chem. 2004, 2, 1213 https://doi.org/10.1039/b401239a
  20. Zabicky, J. J. Chem. Soc. 1961, 683 https://doi.org/10.1039/jr9610000683
  21. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 https://doi.org/10.1021/cr00002a004
  22. Fischer, A.; Galloway, W. J.; Vaughan, J. J. Chem. Soc. 1964, 3588 https://doi.org/10.1039/jr9640003588
  23. Oh, H. K.; Lee, J. Y.; Lee, I. Bull. Korean Chem. Soc. 1988, 19, 1198
  24. Wiberg, K. B. Physical Organic Chemistry; Wiley: New York: 1964; p 378

Cited by

  1. Effects of substituents on activation parameter changes in the Michael-type reactions of nucleophilic addition to activated alkenes and alkynes in solution vol.147, pp.2, 2016, https://doi.org/10.1007/s00706-015-1622-5
  2. Limitations of the Transition State Variation Model. Part 8. Dual Reaction Channels for Solvolyses of 3,4-Dimethoxybenzenesulfonyl Chloride vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2377
  3. Nucleophilic Substitution Reactions of Thiophenyl Cyclobutanecarboxylates with Benzylamines in Acetonitrile vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2535
  4. Kinetics and Mechanism of the Addition of Benzylamines to α-Thiophenyl-β-phenylacrylonitriles in Acetonitrile vol.28, pp.7, 2005, https://doi.org/10.5012/bkcs.2007.28.7.1217
  5. Kinetics and Mechanism of the Aminolysis of Aryl Dithiocyclopentanecarboxylates in Acetonitrile vol.29, pp.3, 2005, https://doi.org/10.5012/bkcs.2008.29.3.675
  6. Kinetics and Mechanism of Addition of Benzylamines to Methyl α-Cyanocinnamates in Acetonitrile vol.30, pp.8, 2005, https://doi.org/10.5012/bkcs.2009.30.8.1887
  7. Surfactant-Catalyzed Addition of Higher Thiols to N-Aryl Substituted Maleimides vol.44, pp.8, 2014, https://doi.org/10.1080/00397911.2013.853192