Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.7.993

Kinetics and Mechanism of the Aminolysis of Phenacyl Bromides in Acetonitrile. A Stepwise Mechanism with Bridged Transition State  

Lee, Ik-Choon (Department of Chemistry, Inha University)
Lee, Hai-Whang (Department of Chemistry, Inha University)
Yu, Young-Kab (Department of Chemistry, Inha University)
Publication Information
Abstract
In the aminolysis of phenacyl bromides ($YC_6H_4COCH_2Br$) with benzylamines ($XC_6H_4CH_2NH_2$) in acetonitrile, the Bronsted βx (βnuc) values observed are rather low ( βX = 0.69-0.73). These values are similar to those (βx $^~_=$ 0.7) for other aminolysis reactions of phenacyl compounds with anilines and pyridines, but are much smaller than those ( βx = 1.1-2.5) for the aminolysis of esters with benzylamines which are believed to proceed stepwise with rate-limiting expulsion of the leaving group. The relative constancy of the βx values (βx $^~_=$ 0.7) irrespective of the amine, leaving group and solvent can be accounted for by a bridged type transition state in the rate-limiting expulsion of the leaving group. Thus the aminolysis of phenacyl derivatives are proposed to proceed stepwise through a zwitterionic tetrahedral intermediate ($T^{\pm}$), with rate-limiting expulsion of the leaving group from $T^{\pm}$. In the transition state, the amine is bridged between the carbonyl and α-carbons, which leads to negligible effect of amine on the leaving group expulsion rate.
Keywords
Bronsted β values; Aminolysis of phenacyl bromides; Stepwise mechanism; Cross-interaction constant;
Citations & Related Records

Times Cited By Web Of Science : 13  (Related Records In Web of Science)
Times Cited By SCOPUS : 14
연도 인용수 순위
1 /
[ Lee, I. ] / Bull. Korean Chem. Soc.
2 Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985.
3 Conant, J. B.; Kirner, W. R. J. Am. Chem. Soc. 1924, 46, 232.   DOI
4 Halvorsen, A.; Songstad, J. J. Chem. Soc.,Chem. Commun. 1978, 327.
5 Bunton, C. A. Nucleophilic Substitution at a Saturated CarbonAtom; Elsevier: London, 1963; p 35.
6 Winstein, S.; Grunwald,E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700.   DOI
7 Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000,65, 4706.   DOI   ScienceOn
8 Lee, I.; Lee,H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.   DOI   ScienceOn
9 Oh, H. K.; Yang, J. H.; Cho, I. H.; Lee, H. W.; Lee, I.Int. J. Chem. Kinet. 2000, 32, 485.   DOI   ScienceOn
10 Epiotis, N. D.; Cherry, W. R.; Shaik, S.; Yates, R.; Bernardi, F.Structural Theory of Organic Chemistry; Springer-Verlag: Berlin,1977.
11 Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,899.   DOI
12 Lee, I.; Kim, C. K.; Li, H.G.; Sohn, C. K.; Kim, C. K.; Lee, B.-S. J. Am. Chem. Soc. 2000,122, 11162.   DOI   ScienceOn
13 Yousaf, T. I.; Lewis, E. S. J. Am. Chem. Soc. 1987, 109, 6137.   DOI
14 Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
15 Forster, W.; Laird, R. M. J. Chem. Soc., Perkin Trans. 2 1982,135.
16 McLennan, D.J.; Pross, A. J. Chem. Soc., Perkin Trans. 2 1984, 981.
17 Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002,67, 3874.   DOI   ScienceOn
18 Deslongchamps, P. Stereoelectronic Effects in OrganicChemistry; Pergamon Press: Oxford, 1983.
19 Coetzee, J. F. Prog.Phys. Org. Chem. 1965, 4, 45.
20 Oh, H. K.; Lee, J.Y.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 1198.
21 Wolfe, S.;Mitchell, D. J.; Schlegel, H. B. Can. J. Chem. 1982, 60, 1291.   DOI
22 Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J.Chem. Soc., Perkin Trans. 2 2000, 2306.
23 Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334.   DOI
24 Dewar, M. J. S. The Electronic Theory of Organic Chemistry;Oxford University Press: Oxford, 1949; p 73.
25 Kirby, A. J. TheAnomeric Effect and Related Stereoelectronic Effects at Oxygen;Springer-Verlag: Berlin, 1983.
26 Lee, I.; Koh, H. J. New J. Chem. 1996, 20, 131.
27 Oh, H. K.; Yang, J. H.; Lee, I. Bull. Korean Chem. Soc. 1999,20, 1418.
28 Pross, A. Theoretical and Physical Principles of OrganicReactivity; Wiley: New York, 1995; Chapter 8.
29 Pross, A.; De Frees, D. J.; Levi, B. A.; Pollack, S. K.; Radom,L.; Hehre, W. J. J. Org. Chem. 1981, 46, 1693.   DOI
30 Lee, I.; Shim, C. S.; Chung, S. Y.; Lee, H. W. J. Chem. Soc.,Perkin Trans. 2 1988, 975.
31 Oh, H. K.; Shin,C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 1169.
32 Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999,64, 4783.   DOI   ScienceOn
33 Fleming, I. Frontier Orbitals and Organic ChemicalReactions; Wiley: London, 1976.
34 Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y.B. J. Phys. Chem. B 1999, 103, 7302.   DOI   ScienceOn
35 Lee, I.; Shim, C. S.; Lee, H. W. J. Phys. Org. Chem. 1989, 2, 484.   DOI
36 Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69.   DOI
37 Oh, H. K.;Woo, S. Y.; Shin, C. H.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 849.   DOI   ScienceOn
38 Streitwieser, A., Jr. Solvolytic Displacement Reactions; McGraw-Hill: New York, 1962.
39 Lee, I. Chem. Soc. Rev. 1994, 24, 223.   DOI
40 Ross, S. D.; Finkelstein, M.; Petersen, R. C. J. Am. Chem. Soc.1968, 90, 6411.   DOI
41 Koh, H.; Lee, J.-W.; Lee,H. W.; Lee, I. New J. Chem. 1997, 21, 447.
42 Thorpe, J. W.; Warkentin,J. Can. J. Chem. 1973, 51, 927.   DOI
43 Kost, D.;Aviram, K. Tetrahedron Lett. 1982, 23, 4157.   DOI   ScienceOn
44 Page, I.; Williams, A. ConertedOrganic and Bio-Organic Mechanisms; CRC Press: Boca Raton,2000; p 111.
45 Koh, H. J.;Lee, H. C.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1995, 16,839.
46 Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org.Chem. 2002, 67, 8995.   DOI   ScienceOn
47 Page, I.; Williams, A. Organic and Bio-OrganicMechanisms; Longman: Harlow, 1977; p 42.
48 Kim, T.-H.;Huh, C.; Lee, B.-S.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995,2257.
49 Pross,A.; Aviram, K.; Klix, R. C.; Kost, D.; Bach, R. D. New J. Chem.1984, 8, 711.
50 Bartlett, P. D.; Trachtenberg, E. N.J. Am. Chem. Soc. 1958, 80, 15808.
51 Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970.   DOI
52 Brunck, T. K.; Weinhold, F. J. Am. Chem. Soc. 1979, 101,1700.   DOI
53 Shaik, S. S. J. Am. Chem. Soc. 1983, 105, 4359.   DOI   ScienceOn
54 Oh, H. K.; Kim, S. K.; Lee, I. Bull.Korean Chem. Soc. 1999, 20, 1017.   DOI   ScienceOn
55 Klumpp, G. W. Reactivity in Organic Chemistry; Wiley: NewYork, 1982; p 310.
56 Koh, H. J.; Kim, O. S.; Lee, H. W.; Lee, I. J. Phys. Org.Chem. 1997, 10, 725.   DOI   ScienceOn
57 Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001,25, 313.   DOI   ScienceOn
58 Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org.Chem. 1997, 62, 5780.   DOI   ScienceOn
59 Dewar, M. J. S.; Dougherty, R. C. ThePMO Theory of Organic Chemistry; Plenum: New York, 1975;Chapter 5.
60 Bordwell, F. G.; Brannen, W. T.J. Am. Chem. Soc. 1964, 86, 4645.   DOI
61 Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee,I. J. Chem. Soc., Perkin Trans. 2 2001, 1753.
62 Yew,K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans.2 1995, 2263.
63 Lee, I.; Lee, B.-S.; Koh, H. J.; Chang, B. D. Bull. Korean Chem.Soc. 1995, 16, 277.
64 Lee, K. S.; Adhikary, K. K.; Lee, H. W.; Lee, B.-S.;Lee, I. Org. Biomol. Chem. 2003, 1, 1989.   DOI   ScienceOn
65 Buncel, E.;Wilson, H. J. Chem. Educ. 1987, 64, 475.   DOI
66 Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985.
67 Lee, I.; Koh, H. J. New J.Chem. 1996, 20, 131.
68 Koh, H. J.; Han, K. L.; Lee, H. W.; Lee,I. J. Org. Chem. 1998, 63, 9834.   DOI   ScienceOn