• Title/Summary/Keyword: Bending tests

Search Result 1,068, Processing Time 0.025 seconds

Kirchhoff Plate Analysis by Using Hermite Reproducing Kernel Particle Method (HRKPM을 이용한 키르히호프 판의 해석)

  • 석병호;송태한
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.67-72
    • /
    • 2003
  • For the analysis of Kirchhoff plate bending problems, a new meshless method is implemented. For the satisfaction of the $C^1$ continuity condition in which the first derivative is treated an another primary variable, Hermite interpolation is enforced on standard reproducing kernel particle method. In order to impose essential boundary conditions on solving $C^1$ continuity problems, shape function modifications are adopted. Through numerical tests, the characteristics and accuracy of the HRKPM are investigated and compared with the finite element analysis. By this implementatioa it is shown that high accuracy is achieved by using HRKPM for solving Kirchhoff plate bending problems.

Bolted joints for single-layer structures: numerical analysis of the bending behaviour

  • Lopez-Arancibia, A.;Altuna-Zugasti, A.M.;Aldasoro, H. Aizpurua;Pradera-Mallabiabarrena, A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.355-367
    • /
    • 2015
  • This paper deals with a new designed joint system for single-layer spatial structures. As the stability of these structures is greatly influenced by the joint behaviour, the aim of this paper is the characterization of the joint response in bending through Finite Element Method (FEM) analysis using ABAQUS. The behaviour of the joints studied here was influenced by many geometrical factors, such as bolts and plate sizes, distance between bolts and end-plate thickness. The study comprised five models of joints with different values of those parameters. The numerical results were compared to the results of previous experimental tests and the agreement was good enough. The differences between the numerical and experimental initial stiffness are attributed to the simplifications introduced when modelling the bolt threads as well as the presence of residual stresses in the test specimens.

The Die Design of STS304 Bezel Frame for The Strength Reinforcement in Hemming Process (강도보강용 STS304 베젤 프레임 헤밍 공정의 금형 설계)

  • Kim, G.H.;Lee, S.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2008
  • As the structure of a mobile phone becomes thin to catch up with a slim product trend, the structural strength and resistance to shock of TFT-LCD module are getting to be reduced. Hence, TFT-LCD module is the strength reinforced by bezel frame. The bezel frame was produced by the multi hemming processes with several folding parts. The determination of the optimal number of hemming part and structure of bezel frame are very important process parameter to obtain the strength of that. The effect of process parameters on strength of bezel frame was investigated by FEA. Based on the result of FEA, the experiment was performed using manufactured hemming die, the result of the experiment was compared with FEA and verified. Also, three point bending tests were performed to check the strength of bezel frame.

Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens

  • Haeri, Hadi
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.605-623
    • /
    • 2015
  • A coupled experimental and numerical study of shear fracture in the edge-notched beam specimens of quasi-brittle materials (concrete-like materials) are carried out using four point bending flexural tests. The crack initiation, propagation and breaking process of beam specimens are experimentally studied by producing the double inclined edge notches with different ligament angles in beams under four point bending. The effects of ligament angles on the shear fracturing path in the bridge areas of the double edge-notched beam specimens are studied. Moreover, the influence of the inclined edge notches on the shear-fracture behavior of double edge-notched beam specimens which represents a practical crack orientation is investigated. The same specimens are numerically simulated by an indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the performed experimental results proving the accuracy and validity of the proposed study.

Structural performance of recycled aggregates concrete sourced from low strength concrete

  • Goksu, Caglar;Saribas, Ilyas;Binbir, Ergun;Akkaya, Yilmaz;Ilki, Alper
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.77-93
    • /
    • 2019
  • Although much research has been carried out using recycled aggregates sourced from normal strength concrete, most of the buildings to be demolished are constructed with low strength concrete. Therefore, the properties of the concrete incorporating recycled aggregates, sourced from the waste of structural elements cast with low strength concrete, were investigated in this study. Four different concrete mixtures were designed incorporating natural and recycled aggregates with and without fly ash. The results of the mechanical and durability tests of the concrete mixtures are presented. Additionally, full-scale one-way reinforced concrete slabs were cast, using these concrete mixtures, and subjected to bending test. The feasibility of using conventional reinforced concrete theory for the slabs made with structural concrete incorporating recycled aggregates was investigated.

Theoretical equivalence and numerical performance of T3γs and MITC3 plate finite elements

  • Katili, Andi Makarim;Maknun, Imam Jauhari;Katili, Irwan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.527-536
    • /
    • 2019
  • This paper will compare $T3{\gamma}_s$ and MITC3 elements, both these two elements are three-node triangular plate bending elements with three degrees of freedom per node. The formulation of the $T3{\gamma}_s$ and MITC3 elements is rather simple and has already been widely used. This paper will prove that the shear strain formulation of these two elements is identical even though they are obtained from two different methods. A single element is used to test the formulation of shear strain matrices. Numerical tests for circular plate cases compared with the exact solutions and with DKMT element will complete this review to verify the performances and show the convergence of these two elements.

Energy and strength in brittle materials

  • Speranzini, Emanuela
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • A study concerning the strength of brittle materials is presented in this paper. The failure behavior was investigated examining the plane of the crack after the failure and comparing the results obtained with those deriving from the fracture mechanics theory. Although the proposed methods are valid in general for brittle materials, the experiment was performed on glass because the results are more significant for this. Glass elements of various sizes and different edge finishes were subjected to bending tests until collapsing. The bending results were studied in terms of failure load and energy dissipation, and the fracture surfaces were examined by means of microscopic analysis, in which the depth of the flaw and the mirror radius of the fracture were measured and the strength was calculated. These results agreed with those obtained from the fracture mechanics analysis.

Relationship between Tensile Characteristics and Fatigue Failure by Folding or Bending in Cu Foil on Flexible Substrate (유연성 기판에 사용되는 전해 동박의 절곡 및 굴곡 피로 파괴와 인장 특성과의 관계)

  • Kim, Byoung-Joon;Jeong, Myeong-Hyeok;Hwang, Sung-Hwan;Lee, Ho-Young;Lee, Sung-Won;Cbun, Ki-Do;Park, Young-Bae;Joo, Young-Cbang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2011
  • Folding endurance, bending fatigue and monotonic tensile tests of 4 kinds of Cu foil on flexible substrate was performed to investigate the relationship between folding or bending endurances and tensile characteristics. The repeated 5.3 or 2.0% strain was applied to Cu foil in folding endurance test or bending fatigue test while monitoring the electrical resistance. Elastic modulus, yield strength, ultimate tensile strength, ductility, and toughness were obtained by monotonic tensile test on the same samples. The Cu foil with higher toughness and ductility showed higher reliabilities in folding or bending fatigue. However, elastic modulus and yield strength did not show any relationship with folding and bending reliability. This is because the failures of Cu foil by folding or bending fatigue were closely related to the fracture energy of metal.

Structural Performance Tests of Down Scaled Composite Wind Turbine Blade using Embedded Fiber Bragg Grating Sensors

  • Kim, Sang-Woo;Kim, Eun-Ho;Rim, Mi-Sun;Shrestha, Pratik;Lee, In;Kwon, Il-Bum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.346-353
    • /
    • 2011
  • In this study, the structural performance tests, i.e., static tests and dynamic tests of the composite wind turbine blade, were carried out by using the embedded fiber Bragg grating (FBG) sensors. The composite wind turbine blade used in the test is the 1/23 scale of the 750 kW composite blade. In static tests, the deflections along the blade were evaluated. Evaluations were carried out with simple beam theory and quadratic fitting method by using the embedded FBG sensors to predict the structural behavior with respect to the load. The deflections were compared to those obtained from the laser displacement sensor and electric strain gauges. They showed good agreement. Modal tests were performed to investigate the dynamic characteristics using the embedded FBG sensors. The natural frequencies obtained from the FBG sensors corresponding to the nine mode shapes of the blade were compared to those from the laser Doppler vibrometer. They were found to be consistent with each other. Therefore, it is concluded that the embedded FBG sensors have a great capability for measuring the structural performances of the composite wind turbine blade when structural performance tests are carried out.

Reliability Evaluation on Pultrusion Composite Sandwich Panel (Pultrusion 복합 샌드위치 패널의 신뢰성 평가)

  • Lee, Haksung;Kim, Eunsung;Oh, Jeha;Kim, Dongki;Lee, Juyoung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.414-420
    • /
    • 2013
  • Research on decreasing the weight of composite sandwich panels is in progress. This paper reports the experimental results for the mechanical behavior of a composite sandwich panel. The skins of sandwich panels were made of glass fiber sheets and plywood matrix composites. Their interior layers consisted of glass fiber pultrusion pipes and gold foam. Experimental tests were performed to obtain the mechanical properties and complex mechanical behavior. Before fatigue tests, tensile tests and 3-point bending tests were carried out to obtain the optimal design and determine their strength and failure mechanisms in the flat-wise position. After the static test, a fatigue test were conducted at a load frequency of 5 Hz, stress ratio (R) of 0.1, and endurance limit for the S-N curve. It showed that the failure modes were related to both the core design and skin failure.