Browse > Article
http://dx.doi.org/10.12989/sem.2019.69.5.527

Theoretical equivalence and numerical performance of T3γs and MITC3 plate finite elements  

Katili, Andi Makarim (Department of Civil Engineering, Universitas Indonesia)
Maknun, Imam Jauhari (Department of Civil Engineering, Universitas Indonesia)
Katili, Irwan (Department of Civil Engineering, Universitas Indonesia)
Publication Information
Structural Engineering and Mechanics / v.69, no.5, 2019 , pp. 527-536 More about this Journal
Abstract
This paper will compare $T3{\gamma}_s$ and MITC3 elements, both these two elements are three-node triangular plate bending elements with three degrees of freedom per node. The formulation of the $T3{\gamma}_s$ and MITC3 elements is rather simple and has already been widely used. This paper will prove that the shear strain formulation of these two elements is identical even though they are obtained from two different methods. A single element is used to test the formulation of shear strain matrices. Numerical tests for circular plate cases compared with the exact solutions and with DKMT element will complete this review to verify the performances and show the convergence of these two elements.
Keywords
plate bending element; $T3{\gamma}_s$; MITC3; Reissner-Mindlin plate theory; assumed natural strain;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mahjudin, M., Lardeur, P., Druesne, F. and Katili, I. (2016), "Stochastic finite element analysis of plates with the certain generalized stresses method", Struct. Saf., 61, 12-21.   DOI
2 Maknun, I.J., Katili, I., Millet, O. and Hamdouni, A. (2016), "Application of DKMQ element for a twist of thin-walled beams: Comparison with Vlasov theory", Int. J. Comput. Meth. Eng. Sci. Mech., 17, 391-400.   DOI
3 Wong, F.T., Richard, A. and Katili, I. (2017), "Development of the DKMQ element for buckling analysis of shear-deformable plate bending", Proc. Eng., 171, 805-812.   DOI
4 Katili, I., Batoz, J.L., Maknun, I.J. and Lardeur, P. (2018), "A comparative formulation of DKMQ, DSQ and MITC4 quadrilateral plate elements with new numerical results based on s-norm tests", Comput. Struct., 204, 48-64.   DOI
5 Katili, I., Maknun, I.J., Batoz, J.L. and Ibrahimbegovic, A. (2018), "Shear deformable shell element DKMQ24 for composite structures", Compos. Struct., 202, 182-200.   DOI
6 Katili, I., Batoz, J.L., Maknun, I.J., Hamdouni, A. and Millet, O. (2014), "The development of DKMQ plate bending element for thick to thin shell analysis based on Naghdi/Reissner/Mindlin shell theory", Fin. Elem. Anal. Des., 100, 12-27.   DOI
7 Banh, T.T. and Lee, D. (2018), "Multi-material topology optimization of Reissner-Mindlin plates using MITC4", Steel Compos. Struct., 27, 27-33.   DOI
8 Katili, I., Maknun, I.J., Millet, O. and Hamdouni, A. (2015), "Application of DKMQ element for composite plate bending structures", Compos. Struct., 132, 166-174.   DOI
9 Katili, I., Maknun, I.J., Batoz, J.L. and Katili, A.M. (2018), "Asymptotic equivalence of DKMT and MITC3 elements for thick composite plates", Compos. Struct., 206, 363-379.   DOI
10 Ko, Y., Lee, P.S. and Bathe, K.J. (2017), "A new MITC4+ shell element", Comput. Struct., 182, 404-418.   DOI
11 Hughes, T.J.R. and Tezduyar, T.E. (1981), "Finite elements based upon Mindlin plate theory with particular reference to the fournode bilinear isoparametric element", Trans. ASME J. App. Mech., 48(3), 587-596.   DOI
12 MacNeal, R.H. (1982), "Derivation of element stiffness matrices by assumed strain distributions", Nucl. Eng. Des., 70(1), 3-12.   DOI
13 Hughes, T.J.R. and Taylor, R.L. (1982), The Linear Triangle Bending Elements, The Mathematics of Finite Element and Application IV, MAFELAP, Academic Press, London, U.K.
14 Ayad, R., Batoz, J.L., Dhatt, G. and Katili, I. (1992), A Study of Recent Triangular Elements for Thin and Thick Plates, Elsevier.
15 Batoz, J.L., Bathe, K.J. and Ho, L.W. (1980), "A study of threenode triangular plate bending elements", Int. J. Numer. Meth. Eng., 15(12), 1771-1812.   DOI
16 Lee, P.S., Noh, H.C. and Bathe, K.J. (2007), "Insight into 3-node triangular shell finite elements: The effect of element isotropy and mesh pattern", Comput. Struct., 85(7-8), 404-418.   DOI
17 Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine dof element for the analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 28(3), 533-560.   DOI
18 Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part I: An extended DKT element for thick-plate bending analysis", Int. J. Numer. Meth. Eng., 36(11), 1859-1883.   DOI
19 Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82(11-12), 945-962.   DOI
20 Lee, Y., Yoon, K. and Lee, P.S. (2012), "Improving the MITC3 shell finite element by using the Hellinger-Reissner principle", Comput. Struct., 110-111, 93-106.   DOI
21 Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23.   DOI
22 Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), "The MITC3+ shell element in geometric nonlinear analysis", Comput. Struct., 146, 91-104.   DOI
23 Ko, Y., Lee, Y., Lee, P.S. and Bathe, K.J. (2017), "Performance of MITC3+ and MITC4+ shell elements in widely-used benchmark problems", Comput. Struct., 193, 187-206.   DOI
24 Batoz, J.L. and Dhatt, G. (1990), Modelisation des Structures par Element Finis, Poutres et Plaques, Hermes, Paris, France.