Acknowledgement
Supported by : Universitas Indonesia
References
- Katili, I., Batoz, J.L., Maknun, I.J., Hamdouni, A. and Millet, O. (2014), "The development of DKMQ plate bending element for thick to thin shell analysis based on Naghdi/Reissner/Mindlin shell theory", Fin. Elem. Anal. Des., 100, 12-27. https://doi.org/10.1016/j.finel.2015.02.005
- Katili, I., Maknun, I.J., Millet, O. and Hamdouni, A. (2015), "Application of DKMQ element for composite plate bending structures", Compos. Struct., 132, 166-174. https://doi.org/10.1016/j.compstruct.2015.04.051
- Mahjudin, M., Lardeur, P., Druesne, F. and Katili, I. (2016), "Stochastic finite element analysis of plates with the certain generalized stresses method", Struct. Saf., 61, 12-21. https://doi.org/10.1016/j.strusafe.2016.02.006
- Maknun, I.J., Katili, I., Millet, O. and Hamdouni, A. (2016), "Application of DKMQ element for a twist of thin-walled beams: Comparison with Vlasov theory", Int. J. Comput. Meth. Eng. Sci. Mech., 17, 391-400. https://doi.org/10.1080/15502287.2016.1231240
- Wong, F.T., Richard, A. and Katili, I. (2017), "Development of the DKMQ element for buckling analysis of shear-deformable plate bending", Proc. Eng., 171, 805-812. https://doi.org/10.1016/j.proeng.2017.01.368
- Katili, I., Batoz, J.L., Maknun, I.J. and Lardeur, P. (2018), "A comparative formulation of DKMQ, DSQ and MITC4 quadrilateral plate elements with new numerical results based on s-norm tests", Comput. Struct., 204, 48-64. https://doi.org/10.1016/j.compstruc.2018.04.001
- Katili, I., Maknun, I.J., Batoz, J.L. and Ibrahimbegovic, A. (2018), "Shear deformable shell element DKMQ24 for composite structures", Compos. Struct., 202, 182-200. https://doi.org/10.1016/j.compstruct.2018.01.043
- Katili, I., Maknun, I.J., Batoz, J.L. and Katili, A.M. (2018), "Asymptotic equivalence of DKMT and MITC3 elements for thick composite plates", Compos. Struct., 206, 363-379. https://doi.org/10.1016/j.compstruct.2018.08.017
- Ko, Y., Lee, P.S. and Bathe, K.J. (2017), "A new MITC4+ shell element", Comput. Struct., 182, 404-418. https://doi.org/10.1016/j.compstruc.2016.11.004
- Banh, T.T. and Lee, D. (2018), "Multi-material topology optimization of Reissner-Mindlin plates using MITC4", Steel Compos. Struct., 27, 27-33. https://doi.org/10.12989/SCS.2018.27.1.027
- Hughes, T.J.R. and Tezduyar, T.E. (1981), "Finite elements based upon Mindlin plate theory with particular reference to the fournode bilinear isoparametric element", Trans. ASME J. App. Mech., 48(3), 587-596. https://doi.org/10.1115/1.3157679
- MacNeal, R.H. (1982), "Derivation of element stiffness matrices by assumed strain distributions", Nucl. Eng. Des., 70(1), 3-12. https://doi.org/10.1016/0029-5493(82)90262-X
- Hughes, T.J.R. and Taylor, R.L. (1982), The Linear Triangle Bending Elements, The Mathematics of Finite Element and Application IV, MAFELAP, Academic Press, London, U.K.
- Ayad, R., Batoz, J.L., Dhatt, G. and Katili, I. (1992), A Study of Recent Triangular Elements for Thin and Thick Plates, Elsevier.
- Batoz, J.L., Bathe, K.J. and Ho, L.W. (1980), "A study of threenode triangular plate bending elements", Int. J. Numer. Meth. Eng., 15(12), 1771-1812. https://doi.org/10.1002/nme.1620151205
- Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine dof element for the analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 28(3), 533-560. https://doi.org/10.1002/nme.1620280305
- Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part I: An extended DKT element for thick-plate bending analysis", Int. J. Numer. Meth. Eng., 36(11), 1859-1883. https://doi.org/10.1002/nme.1620361106
- Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82(11-12), 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004
- Lee, P.S., Noh, H.C. and Bathe, K.J. (2007), "Insight into 3-node triangular shell finite elements: The effect of element isotropy and mesh pattern", Comput. Struct., 85(7-8), 404-418. https://doi.org/10.1016/j.compstruc.2006.10.006
- Lee, Y., Yoon, K. and Lee, P.S. (2012), "Improving the MITC3 shell finite element by using the Hellinger-Reissner principle", Comput. Struct., 110-111, 93-106. https://doi.org/10.1016/j.compstruc.2012.07.004
- Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005
- Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), "The MITC3+ shell element in geometric nonlinear analysis", Comput. Struct., 146, 91-104. https://doi.org/10.1016/j.compstruc.2014.09.004
- Ko, Y., Lee, Y., Lee, P.S. and Bathe, K.J. (2017), "Performance of MITC3+ and MITC4+ shell elements in widely-used benchmark problems", Comput. Struct., 193, 187-206. https://doi.org/10.1016/j.compstruc.2017.08.003
- Batoz, J.L. and Dhatt, G. (1990), Modelisation des Structures par Element Finis, Poutres et Plaques, Hermes, Paris, France.
Cited by
- An improved incompatible DST element using free formulation approach vol.79, pp.1, 2021, https://doi.org/10.12989/sem.2021.79.1.067