DOI QR코드

DOI QR Code

Energy and strength in brittle materials

  • Received : 2019.02.28
  • Accepted : 2019.03.10
  • Published : 2019.04.25

Abstract

A study concerning the strength of brittle materials is presented in this paper. The failure behavior was investigated examining the plane of the crack after the failure and comparing the results obtained with those deriving from the fracture mechanics theory. Although the proposed methods are valid in general for brittle materials, the experiment was performed on glass because the results are more significant for this. Glass elements of various sizes and different edge finishes were subjected to bending tests until collapsing. The bending results were studied in terms of failure load and energy dissipation, and the fracture surfaces were examined by means of microscopic analysis, in which the depth of the flaw and the mirror radius of the fracture were measured and the strength was calculated. These results agreed with those obtained from the fracture mechanics analysis.

Keywords

References

  1. Akbarov, S.D., Cafarova, F.I. and Yahnioglu, N. (2018), "The influence of initial stresses on energy release rate and total electro-mechanical potential energy for penny-shaped interface cracks in PZT/Elastic/PZT sandwich circular plate-disc", Smart Struct. Syst., 22(3), 259-276. DOI:10.12989/sss.2018.22.3.259
  2. Andreozzi, L., Briccoli Bati, S., Ranocchiai, G. and Zulli, F. (2015), "Weathering action on thermo-viscoelastic properties of polymer interlayers for laminated glass", Constr. Build. Mater., 98, 757-766. https://doi.org/10.1016/j.conbuildmat.2015.08.010
  3. ASTM C1678-10 (2010), Standard practice for fractographic analysis of fracture mirror sizes in ceramics and glasses, America Society for Testing materials.
  4. Ballarini, R., Pisano, G. and Royer-Carfagni, G. (2016), "The lower bound for glass strength and its interpretation with generalized Weibull statistics for structural application", J. Eng. Mech., 142(12), 1-20.
  5. Brencich, A. and Gambarotta, L. (2001), "Isotropic damage model with different tensile-compressive response for brittle materials", Int. J. Solids Struct., 38(34-35), 5865-5892. https://doi.org/10.1016/S0020-7683(00)00386-3
  6. Briccoli Bati, S., Ranocchiai, G., Reale, C. and Rovero, L. (2010), "Time-dependent behavior of laminated glass", J. Mater. Civ. Eng., 22, 389-396. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000032
  7. Carpinteri, A. (1992), Meccanica dei Materiali e della Frattura, Pitagora Editrice, Bologna, Italy.
  8. Castilone, R.J., Glaesemann, G.S. and Hanson, T.A. (2002), "Relationship between mirror dimensions and failure stress for optical fibers", Proc. SPIE 4639, Optical Fiber and Fiber Component Mechanical Reliability and Testing II, (Eds., M.J. Matthewson and C.R. Kurkjian), 11-20.
  9. Castori G. and Speranzini, E. (2017), "Structural analysis of failure behavior of laminated glass", Compos. B Eng., 125, 89-99. DOI: 10.1016/j.compositesb.2017.05.062
  10. Cervera, M., Tesei, C. and Ventura, G. (2018), "Cracking of quasibrittle structures under monotonic and cyclic loadings: a d+/ddamage model with stiffness recovery in shear", Int. J. Solid Struct., 135, 148-171. https://doi.org/10.1016/j.ijsolstr.2017.11.017
  11. Charler, R. (1958), "Static fatigue of glass 1", J. Appl. Phys., 29(11), 1549-1553. https://doi.org/10.1063/1.1722991
  12. Charler, R. (1958), "Static fatigue of glass 1I", J Appl. Phys., 29(11), 1554-1559. https://doi.org/10.1063/1.1722992
  13. Ciccotti, M. (2009), "Stress-corrosion mechanism in silicate glasses", J. Phys. D: Appl. Phys., 42, 1-29. https://doi.org/10.1088/0022-3727/42/21/214006
  14. Collini, L. and Royer, C.G. (2014), "Flexural Strength of glassceramic for structural application", J. Eur. Ceram. Soc., 34, 2675-2685. https://doi.org/10.1016/j.jeurceramsoc.2013.10.032
  15. Congleton, J. and Petch, N.J. (1967), "Crack branching", Philos. Mag, 16(142), 749-760. https://doi.org/10.1080/14786436708222774
  16. Corradi, M. and Speranzini E. (2019), "Post-cracking capacity of glass beams reinforced with steel fibers", Materials MDPI, 12(2), 231-246. DOI:10.3390/ma12020231
  17. Davies, D. (1973), "A statistic approach to engineering design in ceramics", Proc. Br. Ceram Soc, 22, 429-452.
  18. EN 1288-3, (2000), Glass in building - Determination of the bending strength of glass - Part 3: Test with specimen supported at two points (four point bending), European Standard.
  19. Fischer, H., Rentzsch, W. and Marx, R., (2002), "A modified size effect model for brittle non-metallic materials", Eng. Fract .Mech., 69, 781-791. https://doi.org/10.1016/S0013-7944(01)00126-6
  20. Foraboschi, P. (2009), "Buckling of a laminated glass column under test", Struct. Eng., 87(1), 2-8.
  21. Foraboschi, P. (2017), "Analytical modeling to predict thermal shock failure and maximum temperature gradients of a glass panel", Mater Des., 134, 301-319. https://doi.org/10.1016/j.matdes.2017.08.021
  22. Freudenthal, AM. (1968), "Statistical approach to brittle fracture", (Ed., H. Liebowitz), Fracture, an advanced treatise, II, Academic Press, New York, 591-619.
  23. Griffith, A.A. (1920), "The phenomena of rupture and flaw in solid", Philos. T. R. Soc. London, 221,163-198.
  24. Haldimann, M. (2006), "Fracture strength of structural glass elements - analytical and numerical modelling, testing and design", PhD Dissertation n. 3671, EPFL, Lausanne, Switzerland.
  25. Haldimann, M., Luibe, A. and Overend, M. (2010), "Structural use of glass", Struct Eng, Documents, IABSE - AIPC - IVBH 10.
  26. Han, Z., Tang, L., Xu, J. and Li, Y. (2009), "A three-parameter Weibull statistical analysis of the strength variation of bulk metallic glasses", Scripta Mater., 61, 923-926. https://doi.org/10.1016/j.scriptamat.2009.07.038
  27. Inglis, C.E. (1913), "Stresses in a plate due to the presence of cracks and sharp corners", T. Inst. Naval Arch., 55, 219-230.
  28. Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech., 24, 361-364. https://doi.org/10.1115/1.4011547
  29. Jang, K. and An, Y.K. (2018), "Multiple crack evaluation on concrete using a line laser thermography scanning system", Smart Struct. Syst., 22(2), 201-207. DOI: 10.12989/sss.2018.22.2.201
  30. Johnson, J.W. and Holloway, D.G. (1966), "Shape and size of fracture zones on glass fracture surfaces", Philos. Mag., 148(30), 731-43. https://doi.org/10.1080/14786436608211968
  31. Kim, B. and Cho, S. (2018), "Efflorescence assessment using hyperspectral imaging for concrete structures", Smart Struct. Syst., 22(2), 209-221. DOI: 10.12989/sss.2018.22.2.209
  32. Levengood, W.C. (1958), "Effects of original flaw Characteristics on Glass Strength", J. Appl. Phys., 29(5), 820-26. https://doi.org/10.1063/1.1723292
  33. Loktionov, A.P. (2016), "A measuring system for determination of a cantilever beam support moment", Smart Struct. Syst., 19(4), 431-439. DOI : 10.12989/sss.2017.19.4.431
  34. Marsili, R., Rossi, G. and Speranzini, E. (2017), "Causes of uncertainty in thermoelasticity measurements of structural elements", Smart Struct. Syst., 20(5), 539-548, DOI: 10.12989/sss.2017.20.5.539.
  35. Overend, M., De Gaetano, S. and Haldimann, M. (2007), "Diagnostic Interpretation of Glass Failure", Struct. Eng., 2, 151-158.
  36. Pisano, G. and Royer, C.G. (2015), "The statistical interpretation of the strength of float glass for structural applications", Constr. Build. Mater., 98, 741-756. https://doi.org/10.1016/j.conbuildmat.2015.08.073
  37. Quinn, G. D. (2003), "Weibull effective volumes and surfaces for cylindrical rods loaded in flexure", J. Am. Ceram. Soc., 86(3): 475-479. https://doi.org/10.1111/j.1151-2916.2003.tb03324.x
  38. Quinn, G., Swab, J.J. and Slavin, M.J. (1990), "A proposed standard practice for fractography analysis of monolithic advanced ceramics", US Army Materials Technology Laboratory.
  39. Turco, E. and Rizzi, N.L. (2016), "Pantographic structures presenting statistically distributed defects: Numerical investigations of the effects on deformation fields", Mech. Res. Commun., 77, 65-69. https://doi.org/10.1016/j.mechrescom.2016.09.006
  40. Weibull, W. (1939), "A statistical theory of the strength of materials", Ingeniorsvetenskapsakademiens Handlingar, 151, 1-45.
  41. Wiederhorn, S.M. (1969), "Fracture surface energy of glass", J. Am. Ceram. Soc., 52, 99-105. https://doi.org/10.1111/j.1151-2916.1969.tb13350.x
  42. Wiederhorn, S.M. and Bolz, L.H. (1970), "Stress-corrosion and static fatigue of glass", J. Am. Ceram Soc., 53(10), 543-548. https://doi.org/10.1111/j.1151-2916.1970.tb15962.x
  43. Wiederhorn, S.M. and Evans, A.G. (1974), "Proof testing of ceramic materials - an analytical basis for failure prediction", Int. J. Fracture, 10(3), 379-392. https://doi.org/10.1007/BF00035499