• Title/Summary/Keyword: Bending fatigue resistance

Search Result 70, Processing Time 0.024 seconds

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

The Effect of Fatigue Strength according to Carburizing Depth (침탄 두께에 따른 피로강도 영향 특성 평가)

  • Choi, Hyun Min;Park, Yong Ha;Shin, Yong Taek;Kim, Myung Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.34-38
    • /
    • 2014
  • Carburizing treatments are the important way to developing fatigue strength and wear resistance. It is well known that the case depth is one of the most significant parameters determining fatigue strength. In this study, 3-point bending fatigue test was conducted to evaluate fatigue strength for the carburized depth with 18CrNiMo7-6 steel. As a result, fatigue strength increased with effective case depth decreased. It is shown that hardness in case hardened layer played principal role in the fatigue strength.

Solder Joints Fatigue Life of BGA Package with OSP and ENIG Surface Finish (OSP와 ENIG 표면처리에 따른 BGA 패키지의 무연솔더 접합부 피로수명)

  • Oh, Chulmin;Park, Nochang;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • Many researches related to the reliability of Pb-free solder joints with PCB (printed circuit board) surface finish under thermal or vibration stresses are in progress, because the electronics is operating in hash environment. Therefore, it is necessary to assess Pb-free solder joints life with PCB surface finish under thermal and mechanical stresses. We have investigated 4-points bending fatigue lifetime of Pb-free solder joints with OSP (organic solderability preservative) and ENIG (electroless nickel and immersion gold) surface finish. To predict the bending fatigue life of Sn-3.0Ag-0.5Cu solder joints, we use the test coupons mounted 192 BGA (ball grid array) package to be added the thermal stress by conducting thermal shock test, 500, 1,000, 1,500 and 2,000 cycles, respectively. An 4-point bending test is performed in force controlling mode. It is considered that as a failure when the resistance of daisy-chain circuit of test coupons reaches more than $1,000{\Omega}$. Finally, we obtained the solder joints fatigue life with OSP and ENIG surface finish using by Weibull probability distribution.

Evaluation of Fatigue Resistance of Selected Warm-mix Asphalt Concrete (준고온 아스팔트 콘크리트 피로저항성 평가)

  • Kim, Sungun;Lee, Sung-Jin;Kim, Kwang W.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.29-38
    • /
    • 2020
  • Since some warm-mix asphalt (WMA) concretes were known to show poorer rut resistance than the hot-mix asphalt (HMA) concretes, many studies were performed in efforts of improving its performance at high temperature. The reason is assumed to be due to the moisture remaining in aggregates dried at lower temperature. Therefore, not only the rut resistance, the crack resistance of WMA concrete was also in question. In this study, fatigue life of WMA concrete was evaluated in comparison with HMA using 3-point bending (3PB) beam test. The asphalt mixtures were prepared based on Korean mix-design guide using a 13 mm dense-graded aggregate and 6 binders; two HMA binders and four WMA binders. By 3PB fatigue test, normal (unmodified) and polymer-modified WMA concretes were evaluated in comparison with normal and polymer-modified HMA concretes at a low temperature (-5℃). The results showed that most of WMA concretes showed longer fatigue lives than HMA concretes, even though the same PG binders were used for HMA and WMA. This result indicates that the WMA concretes have stronger resistance against fatigue cracking than HMA at the low temperature, and this result is in contrast to the high-temperature performance test.

Prediction of Cryogenic S-N Fatigue Behavior of Cast 304 Stainless Steel (304 스테인리스강 주조재의 저온 S-N 피로거동 예측)

  • Kwon, Jae-ki;Lee, Hyun-jung;Kim, Young-ju;Kim, Sangshik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.774-779
    • /
    • 2011
  • S-N fatigue behavior of cast 304 stainless steel was studied at 25, -50 and $-196^{\circ}C$ and at a stress ratio of -1 in uniaxial and bending loading condition. It was found that the resistance to S-N fatigue was greatly improved with decreasing testing temperature. The normalized S-N fatigue curves by tensile strength at three different testing temperatures matched each other, suggesting that tensile strength determines the S-N fatigue resistance of cast 304 stainless steel at low temperatures. The effects of different loading on the resistance to S-N fatigue of cast 304 stainless steel were quantified. The S-N fatigue curves at 25, -50 and $-196^{\circ}C$ were described by using Basquin's law the relationship between the S-N fatigue curve and the testing temperature was obtained by using a simple regression method.

Enhancement and Evaluation of Fatigue Resistance for Spine Fixation System (척추고정장치의 피로성능 평가와 향상)

  • Kim, Hyun-Mook;Kim, Sung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.142-147
    • /
    • 2009
  • Spinal fixation systems provide surgical versatility, but the complexity of their design reduces their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. A group of two assemblies was tested in static compression. One group was applied to surface a grit blasting method and another group was applied to surface a bead blasting method. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six assembles. Static compression 2% offset yield load ranges was from 327 to 419N. Fatigue loads were determined two levels, 37.5% and 50% of the average load from static compression ultimate load. An assembly of bead blasting treatment only achieved 5 million cycles at 37.5% level in compression bending.

Relationship between Tensile Characteristics and Fatigue Failure by Folding or Bending in Cu Foil on Flexible Substrate (유연성 기판에 사용되는 전해 동박의 절곡 및 굴곡 피로 파괴와 인장 특성과의 관계)

  • Kim, Byoung-Joon;Jeong, Myeong-Hyeok;Hwang, Sung-Hwan;Lee, Ho-Young;Lee, Sung-Won;Cbun, Ki-Do;Park, Young-Bae;Joo, Young-Cbang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2011
  • Folding endurance, bending fatigue and monotonic tensile tests of 4 kinds of Cu foil on flexible substrate was performed to investigate the relationship between folding or bending endurances and tensile characteristics. The repeated 5.3 or 2.0% strain was applied to Cu foil in folding endurance test or bending fatigue test while monitoring the electrical resistance. Elastic modulus, yield strength, ultimate tensile strength, ductility, and toughness were obtained by monotonic tensile test on the same samples. The Cu foil with higher toughness and ductility showed higher reliabilities in folding or bending fatigue. However, elastic modulus and yield strength did not show any relationship with folding and bending reliability. This is because the failures of Cu foil by folding or bending fatigue were closely related to the fracture energy of metal.

Mechanical Properties of Zelkova Serrata Makino in Accelerated Weathering Test (촉진 열화 느티나무 부재의 역학적 특성)

  • Kim, Gwang-Chul;Park, Chun-Young
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.4
    • /
    • pp.392-397
    • /
    • 2015
  • This study was carried out to analyze the effects on mechanical properties of deteriorated wood member by outdoor condition. The surface color, mechanical properties and structural stability of traditional wooden structures, exposed in water and UV, could be changeable. For the purpose, accelerated weathering test based on outdoor condition was carried out. The weathering time levels were composed 0, 500, 1000, 1,500 and 2,000 hours and mechanical properties were evaluated on each specimen according to weathering time level. Bending properties were decreased on weathering but recovered after 1,000 hours. Fatigue and impact strength were decreased to 1,000 hours and did not changed since then. Abrasion resistance was minimized in 1,000 hours. This results could be utilized for effectively stability management of traditional wooden structures and members.

The Influence of Marine Environmental Factor on the Corrosion Fatigue Fracture of SS41 Steel (SS41강의 부식피로파양에 미치는 해양환경인자의 영향)

  • 김원영;임종문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 1991
  • Corrosion fatigue test was performed by the use of plane bending fatigue tester in marine environment having various specific resistance from 25(natural sea water) to 5000.ohm.cm. It is in order to investigate the effects of marine environmental factor on the corrosion fatigue fracture of SS41 steel. The main results obtained are as follows; 1. The aspect ratio(b/a) of corner crack growing in natural sea water is lower than that in air. 2. The surface crack growth rate(da/dN) in marine environment is faster than that in air and da/dN delaies with the specific resistance increased. 3. The experimental constant m of paris rule [da/dN=C(${\delta}$K)$^m$] decrease with the specific resistance decreased and the effect of corrosion in proportion to the specific resistance is more sensitive than that of stress intensity factor range(${\delta}$K) under region II. 4. The accelerative factor(${\alpha}$) in marine environment is about 1.1-2.7 and .alpha. is increase under the low region of stress intensity factor range(${\delta}$K). 5. The electrode potential($E_0$) gets less noble potential with the specific resistance decreased.

  • PDF

Influence of Carbide Formation on Tensile and Fatigue Properties of Carburized Steels

  • Yu, Eunji;Jung, Heejong;Kim, Kun-Su;Kim, Eui-Jun;Kim, Jongryoul
    • Applied Microscopy
    • /
    • v.43 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • The influence of carbide formation on mechanical properties has been investigated in carburized steels. Through controlled diffusion and precipitation processes, the morphologies of carbides could be changed and then fine, networked, and spherical shapes at carburized layers were obtained. These morphological changes affected tensile and bending fatigue properties of the steel. The fine and the spherical carbides acted as resistance sites against crack propagation, which improved the mechanical properties. However, the networked carbides deteriorated the properties because the cracks propagated along the boundaries of them. These results indicate that the morphological control of carbides is one of important keys to improve the mechanical properties.