DOI QR코드

DOI QR Code

304 스테인리스강 주조재의 저온 S-N 피로거동 예측

Prediction of Cryogenic S-N Fatigue Behavior of Cast 304 Stainless Steel

  • 권재기 (한국지질자원연구원 광물자원연구본부) ;
  • 이현정 (경상대학교 금속재료공학과 항공기부품기술연구소) ;
  • 김영주 (한국지질자원연구원 광물자원연구본부) ;
  • 김상식 (경상대학교 금속재료공학과 항공기부품기술연구소)
  • Kwon, Jae-ki (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, Hyun-jung (ReCAPT, Department of Metallurgical and Materials Engineering, Gyeongsang National University) ;
  • Kim, Young-ju (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Sangshik (ReCAPT, Department of Metallurgical and Materials Engineering, Gyeongsang National University)
  • 투고 : 2011.06.10
  • 발행 : 2011.10.25

초록

S-N fatigue behavior of cast 304 stainless steel was studied at 25, -50 and $-196^{\circ}C$ and at a stress ratio of -1 in uniaxial and bending loading condition. It was found that the resistance to S-N fatigue was greatly improved with decreasing testing temperature. The normalized S-N fatigue curves by tensile strength at three different testing temperatures matched each other, suggesting that tensile strength determines the S-N fatigue resistance of cast 304 stainless steel at low temperatures. The effects of different loading on the resistance to S-N fatigue of cast 304 stainless steel were quantified. The S-N fatigue curves at 25, -50 and $-196^{\circ}C$ were described by using Basquin's law the relationship between the S-N fatigue curve and the testing temperature was obtained by using a simple regression method.

키워드

과제정보

연구 과제번호 : Drill Riser System 기술 개발

연구 과제 주관 기관 : 한국지질자원연구원

참고문헌

  1. K. S. Kim, S. H. Boo, C. Y. Park, Y. G. Cho, and J. S. Lee, Korean Soc. Ocean Eng. 22, 96 (2008).
  2. P. Lacombe, G. Beranger, and B. Baroux, Strainless Steel, Les Editions de Physique Ulis (1993).
  3. T. S. Byun, N. Hashimoto, and K. Farrell, Acta Mater. 52, 3889 (2004). https://doi.org/10.1016/j.actamat.2004.05.003
  4. K. Tokaji, K. Kohyama, and M. Akita, Inter. J. Fatigue 26, 543 (2004). https://doi.org/10.1016/j.ijfatigue.2003.08.024
  5. J. B. Vogt, J. Foct, C. Regenard, G. Robert, and J. Dhers, Metal. Mater. Trans. A 22A, 2385 (1991).
  6. J. R. Davis, Stainless Steels, ASM International, Materials Park, OH (1994).
  7. C. Zhongbing, L. Guoqing, Z. Hui, and C. Chuanyao, Eng. Fail. Analysis 16, 1483 (2009). https://doi.org/10.1016/j.engfailanal.2008.09.033
  8. R. Mythili, S. Saroja, and M. Vijayalakshmi, Trans. Indian Inst. Met. 62, 573 (2009). https://doi.org/10.1007/s12666-009-0096-8
  9. L. Zheng, A. Neville, A. Gledhill, and D. Johnston, J. Mater. Eng. Perform. 19, 90 (2010). https://doi.org/10.1007/s11665-009-9416-8
  10. S. V. Phadnis, A. K. Satpati, K.P. Muthe, J.C. Vyas, and R.I. Sundaresan, Corrosion Sci. 45, 2467 (2003). https://doi.org/10.1016/S0010-938X(03)00099-4
  11. O. S. Lee, Y. S. Han, and S. Yoo, J. Soc. Naval Architects of Korea 34, 61 (1997).
  12. N. Miura and Y. Takahashi, Inter. J. Fatigue 28, 1618 (2006). https://doi.org/10.1016/j.ijfatigue.2005.07.051
  13. M. J. Caton, Ph. D. Thesis, University of Michigan (2001).
  14. D. Y. Ryoo, S. C. Lee, Y. D. Lee, and J. Y. Kang, J. Kor. Inst. Met. & Mater. 39, 1381 (2001).
  15. J. K. Kwon, Y. K. Kim, S. Z. Han, M. Goto, and S. S. Kim, Met. Mater. Int. 15, 925 (2009). https://doi.org/10.1007/s12540-009-0925-7
  16. Y. H. Jang, Y. I. Jeong, C. H. Yoon, and S. S. Kim, Metall. Mater. Trans. A 40, 1090 (2009). https://doi.org/10.1007/s11661-009-9795-3
  17. G. T. Gray, A. W. Thompson, and J. C. Williams, Metall. Mater. Trans. A 16, 753 (1985). https://doi.org/10.1007/BF02814826
  18. T. Yuri, T. Ogata, M. Saito, and Y. Hirayama, Cryogenics 40, 251 (2000). https://doi.org/10.1016/S0011-2275(00)00033-3
  19. J. Kohout, Fatigue Fract. Engng. Mater. Struct. 23, 969 (2000). https://doi.org/10.1046/j.1460-2695.2000.00276.x