Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.10.774

Prediction of Cryogenic S-N Fatigue Behavior of Cast 304 Stainless Steel  

Kwon, Jae-ki (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources)
Lee, Hyun-jung (ReCAPT, Department of Metallurgical and Materials Engineering, Gyeongsang National University)
Kim, Young-ju (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources)
Kim, Sangshik (ReCAPT, Department of Metallurgical and Materials Engineering, Gyeongsang National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.10, 2011 , pp. 774-779 More about this Journal
Abstract
S-N fatigue behavior of cast 304 stainless steel was studied at 25, -50 and $-196^{\circ}C$ and at a stress ratio of -1 in uniaxial and bending loading condition. It was found that the resistance to S-N fatigue was greatly improved with decreasing testing temperature. The normalized S-N fatigue curves by tensile strength at three different testing temperatures matched each other, suggesting that tensile strength determines the S-N fatigue resistance of cast 304 stainless steel at low temperatures. The effects of different loading on the resistance to S-N fatigue of cast 304 stainless steel were quantified. The S-N fatigue curves at 25, -50 and $-196^{\circ}C$ were described by using Basquin's law the relationship between the S-N fatigue curve and the testing temperature was obtained by using a simple regression method.
Keywords
cast 304 stainless steel; S-N fatigue; cryogenic temperatures;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 K. S. Kim, S. H. Boo, C. Y. Park, Y. G. Cho, and J. S. Lee, Korean Soc. Ocean Eng. 22, 96 (2008).
2 P. Lacombe, G. Beranger, and B. Baroux, Strainless Steel, Les Editions de Physique Ulis (1993).
3 T. S. Byun, N. Hashimoto, and K. Farrell, Acta Mater. 52, 3889 (2004).   DOI   ScienceOn
4 K. Tokaji, K. Kohyama, and M. Akita, Inter. J. Fatigue 26, 543 (2004).   DOI   ScienceOn
5 J. B. Vogt, J. Foct, C. Regenard, G. Robert, and J. Dhers, Metal. Mater. Trans. A 22A, 2385 (1991).
6 J. R. Davis, Stainless Steels, ASM International, Materials Park, OH (1994).
7 C. Zhongbing, L. Guoqing, Z. Hui, and C. Chuanyao, Eng. Fail. Analysis 16, 1483 (2009).   DOI   ScienceOn
8 R. Mythili, S. Saroja, and M. Vijayalakshmi, Trans. Indian Inst. Met. 62, 573 (2009).   DOI   ScienceOn
9 L. Zheng, A. Neville, A. Gledhill, and D. Johnston, J. Mater. Eng. Perform. 19, 90 (2010).   DOI   ScienceOn
10 S. V. Phadnis, A. K. Satpati, K.P. Muthe, J.C. Vyas, and R.I. Sundaresan, Corrosion Sci. 45, 2467 (2003).   DOI   ScienceOn
11 O. S. Lee, Y. S. Han, and S. Yoo, J. Soc. Naval Architects of Korea 34, 61 (1997).
12 N. Miura and Y. Takahashi, Inter. J. Fatigue 28, 1618 (2006).   DOI   ScienceOn
13 M. J. Caton, Ph. D. Thesis, University of Michigan (2001).
14 D. Y. Ryoo, S. C. Lee, Y. D. Lee, and J. Y. Kang, J. Kor. Inst. Met. & Mater. 39, 1381 (2001).
15 J. K. Kwon, Y. K. Kim, S. Z. Han, M. Goto, and S. S. Kim, Met. Mater. Int. 15, 925 (2009).   DOI   ScienceOn
16 Y. H. Jang, Y. I. Jeong, C. H. Yoon, and S. S. Kim, Metall. Mater. Trans. A 40, 1090 (2009).   DOI   ScienceOn
17 G. T. Gray, A. W. Thompson, and J. C. Williams, Metall. Mater. Trans. A 16, 753 (1985).   DOI   ScienceOn
18 T. Yuri, T. Ogata, M. Saito, and Y. Hirayama, Cryogenics 40, 251 (2000).   DOI   ScienceOn
19 J. Kohout, Fatigue Fract. Engng. Mater. Struct. 23, 969 (2000).   DOI