• Title/Summary/Keyword: Bayesian statistical method

Search Result 306, Processing Time 0.02 seconds

Bayesian Analysis in Generalized Log-Gamma Censored Regression Model

  • Younshik chung;Yoomi Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.733-742
    • /
    • 1998
  • For industrial and medical lifetime data, the generalized log-gamma regression model is considered. Then the Bayesian analysis for the generalized log-gamma regression with censored data are explained and following the data augmentation (Tanner and Wang; 1987), the censored data is replaced by simulated data. To overcome the complicated Bayesian computation, Makov Chain Monte Carlo (MCMC) method is employed. Then some modified algorithms are proposed to implement MCMC. Finally, one example is presented.

  • PDF

BAYESIAN INFERENCE FOR MTAR MODEL WITH INCOMPLETE DATA

  • Park, Soo-Jung;Oh, Man-Suk;Shin, Dong-Wan
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.183-189
    • /
    • 2003
  • A momentum threshold autoregressive (MTAR) model, a nonlinear autoregressive model, is analyzed in a Bayesian framework. Parameter estimation in the presence of missing data is done by using Markov chain Monte Carlo methods. We also propose simple Bayesian test procedures for asymmetry and unit roots. The proposed method is applied to a set of Korea unemployment rate data and reveals evidence for asymmetry and a unit root.

  • PDF

Bayesian Prediction under Dynamic Generalized Linear Models in Finite Population Sampling

  • Dal Ho Kim;Sang Gil Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.795-805
    • /
    • 1997
  • In this paper, we consider a Bayesian forecasting method for the analysis of repeated surveys. It is assumed that the parameters of the superpopulation model at each time follow a stochastic model. We propose Bayesian prediction procedures for the finite population total under dynamic generalized linear models. Some numerical studies are provided to illustrate the behavior of the proposed predictors.

  • PDF

Bayesian Prediction of Exponentiated Weibull Distribution based on Progressive Type II Censoring

  • Jung, Jinhyouk;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.427-438
    • /
    • 2013
  • Based on progressive Type II censored sampling which is an important method to obtain failure data in a lifetime study, we suggest a very general form of Bayesian prediction bounds from two parameters exponentiated Weibull distribution using the proper general prior density. For this, Markov chain Monte Carlo approach is considered and we also provide a simulation study.

A Bayesian Approach to Paired Comparison of Several Products of Poisson Rates

  • Kim Dae-Hwang;Kim Hea-Jung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.229-236
    • /
    • 2004
  • This article presents a multiple comparison ranking procedure for several products of the Poisson rates. A preference probability matrix that warrants the optimal comparison ranking is introduced. Using a Bayesian Monte Carlo method, we develop simulation-based procedure to estimate the matrix and obtain the optimal ranking via a row-sum scores method. Necessary theory and two illustrative examples are provided.

  • PDF

A Study on Bayesian Image Restoraation with Edge Detection

  • Jongseok Um;Park, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.2
    • /
    • pp.217-225
    • /
    • 1996
  • We propose a line process for edge detection which is easy to implement foe Bayesian image restoration. Comparisons are made between the proposed method and the method suggesed by Geman and Geman (1984) in two cases, simple image and complicated image. We show that the proposed method improve images mainly at the edges.

  • PDF

A Bayesian Approach to Detecting Outliers Using Variance-Inflation Model

  • Lee, Sangjeen;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.805-814
    • /
    • 2001
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for outliers problem and also analyze it in linear regression model using a Bayesian approach with the variance-inflation model. We will use Geweke's(1996) ideas which is based on the data augmentation method for detecting outliers in linear regression model. The advantage of the proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability The sampling based approach can be used to allow the complicated Bayesian computation. Finally, our proposed methodology is applied to a simulated and a real data.

  • PDF

Adaptive Noise Reduction Algorithm for an Image Based on a Bayesian Method

  • Kim, Yeong-Hwa;Nam, Ji-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.619-628
    • /
    • 2012
  • Noise reduction is an important issue in the field of image processing because image noise lowers the quality of the original pure image. The basic difficulty is that the noise and the signal are not easily distinguished. Simple smoothing is the most basic and important procedure to effectively remove the noise; however, the weakness is that the feature area is simultaneously blurred. In this research, we use ways to measure the degree of noise with respect to the degree of image features and propose a Bayesian noise reduction method based on MAP (maximum a posteriori). Simulation results show that the proposed adaptive noise reduction algorithm using Bayesian MAP provides good performance regardless of the level of noise variance.

Uncertainty decomposition in climate-change impact assessments: a Bayesian perspective

  • Ohn, Ilsang;Seo, Seung Beom;Kim, Seonghyeon;Kim, Young-Oh;Kim, Yongdai
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.109-128
    • /
    • 2020
  • A climate-impact projection usually consists of several stages, and the uncertainty of the projection is known to be quite large. It is necessary to assess how much each stage contributed to the uncertainty. We call an uncertainty quantification method in which relative contribution of each stage can be evaluated as uncertainty decomposition. We propose a new Bayesian model for uncertainty decomposition in climate change impact assessments. The proposed Bayesian model can incorporate uncertainty of natural variability and utilize data in control period. We provide a simple and efficient Gibbs sampling algorithm using the auxiliary variable technique. We compare the proposed method with other existing uncertainty decomposition methods by analyzing streamflow data for Yongdam Dam basin located at Geum River in South Korea.

Bayesian Method on Sequential Preventive Maintenance Problem

  • Kim Hee-Soo;Kwon Young-Sub;Park Dong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.191-204
    • /
    • 2006
  • This paper develops a Bayesian method to derive the optimal sequential preventive maintenance(PM) policy by determining the PM schedules which minimize the mean cost rate. Such PM schedules are derived based on a general sequential imperfect PM model proposed by Lin, Zuo and Yam(2000) and may have unequal length of PM intervals. To apply the Bayesian approach in this problem, we assume that the failure times follow a Weibull distribution and consider some appropriate prior distributions for the scale and shape parameters of the Weibull model. The solution is proved to be finite and unique under some mild conditions. Numerical examples for the proposed optimal sequential PM policy are presented for illustrative purposes.