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A Bayesian Approach to Detecting Outliers
Using Variance-Inflation Model
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Abstract

The problem of ’‘outliers’, observations which look suspicious in some way, has
long been one of the most concern in the statistical structure to experimenters and
data analysts. We propose a model for outliers problem and also analyze it in linear
regression model using a Bayesian approach with the variance-inflation model. We
will use Geweke’s(1996) ideas which is based on the data augmentation method for
detecting outliers in linear regression model. The advantage of the proposed method is
to find a subset of data which is most suspicious in the given model by the posterior
probability. The sampling based approach can be used to allow the complicated
Bayesian computation. Finally, our proposed methodology is applied to a simulated
and a real data.

Keywords : Gibbs sampler; Latent variable; Linear regression model; Mean shift model;
QOutlier; Metropolis—Hastings algorithm; Variance inflation model.

1. Introduction

The problem of ‘outliers’, observations which look suspicious in some way, has long been
one of the most concern in the statistical structure to experimenters and data analysts. An
outlier is ususally defined to be an observation that does not come from the assumed model
or an extreme observation that is far away from the rest of observations. Giving a precise
definition to the concept of an outlier is difficult since the notion of an ‘extreme observation’
is subtle. We refer the reader to Pettit and Smith(1985) for a discussion.

In this paper, we propose a model for an outlier problem and also analyze it using a
Bayesian approach. The Bayesian approaches for outlier detection can be classified into two
procedures such as using alternative model for outliers or not. For the method without having
alternative model, the predictive distribution is used in Geisser(1985) and Pettit and
Smith(1985), or the posterior distribution is used in Chaloner and Brant(1988) and Guttman
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and Pena(1993). For alternative model, the mean-shift model and the variance-inflation model
are used in Guttman(1973) and Sharples(1990).

Let y be an observation vector from N ,u,oz). The mean-shift model is that a suspicious

observation is distributed as Mu+ m, 0’2). If m is not a zero, the corresponding observation
is decided as an outlier, Guttman(1973) applied the mean-shift model to a linear model.
Recently, Chung and Kim(1999) considered mean-shift model to a mixed linear model using

MCMC method. The variance-inflation model is that an observation y; be from N(g, b,»dz).
The observation, v; with b_i >> 1y, is treated as an outlier (Box and Tiao, 19683).

Sharples(1990) showed how variance inflation can be incorporated easily into general
hierarchical models, retaining tractability of analysis. For detecting outliers, we use
Geweke(1996)'s method, which was introduced as the method for selecting the best predictors
in multiple regression model using Gibbs sampler.

The plan of this article is as follows. In section 2, we introduce the variance-inflation model
and motivate the hierarchical framework to which Geweke’s(1996) method is applied to detect
the outliers. Finally, we apply our proposed methodology to a simulated data and a real data
set (Darwin’s data: Guttman, Dutter and Freeman, 1978) in section 3.

2. Variance—Inflation Model

2.1. Geweke's method

For detecting outliers in linear regression model, the variance-inflation model is used. This
method is that an observation v, is assumed to come from My, c¢26°), i=1,---,n Then
the observation, y; with ¢;>1, is treated as an outlier (Box and Tiao, 1968). Sharples(1990)

showed how the variance inflation can be incorporated easily into general hierarchical models,
retaining analytical tractibility.

In this paper, we use the variance-inflation model for the linear regression problem.

Specifically, we assume that for some particular (#z % p) design matrix X of constants, it is

intended to generate data y=(y,,...,¥,) Such that
y=XB+te, (2.1)

where B=(f,,...,8,) is a set of p unknown regression parameters, and the (#x1) error
vector € is normally distributed with mean vector (), and variance-covariance matrix o C,

where ¢ is unknown and C, is an #nXn diagonal matrix with diagonal elements
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Therefore if b,=1, then the 7 th observation is not an outlier. It is considered as an outlier

) for the sake of computational convenience. That is, c,~=% for i=1,...,n
H

when 0<b;<1, since its corresponding variance is very large compared to the common

variance . For detecting outliers, we use Geweke(1996)'s method which was introduced as
the method for selecting the best predictors in multiple regression model using Gibbs sampler.

By introducing the latent variable 7;,=0 or 1, we represent our normal mixture by
[B,l7,] o< (1—y)Kbj=1)+ 7,N(b}, I0< b<1) (2.2)

where

Pr(7;=1)=1—Pr(y;=0)=p; (2.3)

[ -1 denotes it density and I(+) is an indicate function with value 1 for including in the

set or 0 otherwise.

This is based on the data augmentation idea of Tanner and Wong(1987). Geweke(1996) use
similar structure as in (2.2) and (2.3) for variable selection in linear regression model.

When 7;=0, b;~I(b,=1) which implies that the corresponding data y; is not an outlier
and if 7;=1, b~N(b}, )K0<b;<1) implies that the corresponding data y; should
probably be an outlier in the given model. The choice of A7) should incorporate any available

prior information about which subsets of y-:,v, should be outliers in the given model. For

example, a reasonable choice might be the 7’'s independent with marginal distributions, so

that
Sy, 0= Lo/ (1=p) 7. 24

Again (2.4) implies that the outlier y; is independent of the outlier of y; for all 7#j, we
found it to work well in the various situations. The uniform or indifference prior Ay)=2 "
is the special case of (2.4) where each y; has an equal chance of being an outlier. Also, it is
assumed that the prior of B=(A4, s By) fs a normal distribution with mean vector

u={(s1,...,#t,) and variance-covariance matrix X!, that is, A~N(z,2”!) and & is
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distributed as the inverse gamma conjugate prior 02|7~1

The posterior distribution may be expressed up to a constant by combining the densities
defined from (2.1) through (2.4) as

[8.6,5AY]
o< [T (o)~

col

exp (— 5Ly (y= X C7 (6= X B)exp (== (8~ S(f~ )

]lep,~”(1 —1) ") (25)

where p(b,) is the prior density for &; as defined in (2.2) and p(62)=IG(02;—V2—7,—K2&)

and b=(by ...,b,) and y={(ry, ..., 7.

In this procedure, our main concern for embedding the normal linear model (1.1) into the
hierarchical mixture model is to obtain the marginal posterior distribution A AY)cA YInAy),
which contains the information relevant to outliers. As mentioned as before, Ay) may be
interpreted as the statistician’s prior probability that the y;'s corresponding to an non-zero
components of ¥ should be outliers in the given model. The posterior density ANWY) updates
the prior probabilities on each of the 2" possible values of 7. Identifying each y with a
subset of data via that y,=1 is equivalent to that y; is an outlier. Those ¥ with higher

posterior probability A AY) identify that a subset of data is most suspicious by data and the
statistician’s prior information. Therefore, AAY) provides a ranking that can be used to

select a subset of the most suspicious data.
2.2. Computation

The computational procedure employed here is a Gibbs sampler. A value for each b&; is
drawn in turn from its conditional on &,(/%*j), B and ¢ and a value for o is drawn from

conditional on b and B, and the value for A is generated from the conditional on b and .
The conditional distributions involved in the algorithm are simple. Given b, (I%j), ¢ and

B, the likelihood function kernel of b; is

by, — 20 Bex i)?
(b)) bjexp{— 2%1 l }. (2.6)
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Conditional on &;=1, the value of the kernel is

- 21 Brx jk)2
exp {— — }. 2.7

Conditional on b;#1 the corresponding kernel density for b; is

b?(yj_ glﬁkx,‘k)z (b— b,-O)Z
b, ~ bjexp{— 57 }exp{—T}

— 40 _ 30
o oL ,.b’ )— o b’ )} TH0< bK< D)

- bexp(— (r?z?+oz><b,-~ﬂbi>2 b6 — 1)
= bjexp 2L }exp{——————zﬁ }
o o2 - by - o=t L)) TH0< b5 1) 2.8)
b

where z°=(y;— Zlﬁkx w¢ and #b’zm' To remove the conditioning on &b;=1 or
177

bj#1, it is necessary to integrate (2.8) over b; and compare this expression to (2.7). The

integration yields

1 (525 + )(b;— 1 y)*
fo biexp{— 200 }db;
bYUBY— 4, 30 _ 20
exD{——](”lirTlfL)}rfl{(D( ) —o(— ! 29)

Note that the conditional probability of yi=1, p]'O, i1s proportional to
D, Pr(0< 6,<11b (-8, >,y and that of 7;,=0 is proportional to
(1—p)Pr(1—e< b1+ €b(—,, B,0°,y) with e—0. The notation b(-j means that the &,’s
except b;. Thus p,-o can be expressed in terms of the Bayes factor for H, : b,=1 against
H, @ 0<b;<{1 obtained from the full conditionai distribution of &;. The conditional Bayes

factor in favor of b;#1, versus b;=1, is
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) 1 (r,z-z,2~+ @) b,—p bi)z bjo(bjo— &) z?
BF = j(; b,'eXD{_ 20_22_3 }dbjexp{ 22_? + 20_2 }
—p0 —p0
7, O : T‘b’ )—¢(~%)}‘1. (2.10)
7 7

Here, the numerical integration is used for computing the integration part of BF in (2.10).
Recall that the Bayes factor is the ratio of posterior and prior odd. That is,

_ (1- 17,'0)/17,'0

To draw b; from its conditional distribution, the conditional posterior probability that &;,=1is

computed from the conditional Bayes factor (2.12):

’ (1—p,)BF+ p;

(2.12)

This gives the full conditional distribution of 7; as Bernuolli with a success probability pjo.
That is,
[718,6,0°, y1~Ber(p) (2.13)

Based on the comparison of this probability with a drawing from the uniform distribution on
[0,1], the choice b;=1 or b;#1 is made. If b;+1 then b&; is drawn from (2.8). And then
since the form of (2.8) is not standard, we can use Metropolis-Hastings algorithm (Chib and

Greenberg, 1995) which need the derived function 7 as follows;

2 2 — 2
7(b;) = exp{— (T’ZZ”LEZ(:;’ “o) )10, (2.14)

2
szj

which is the truncated normal distribution with mean #, and variance 22+ 2
Fiad}

*

b; . "
I(0<b;<{1). Then the acceptance probability e is a= min{T’n)—, 1} where &; and bj( ) are
j

the candidate at the current (n+1) stage and the variate at the previous (n) stage of b,

respectively. We further have
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[Blb, 7,0 ¥] < exp Gz(y XB)'C (y— X B)Yexp{—— (3—;0‘2(3—#)} (2.15)

and

t—1
(18, 7. 7.5] = IG( n+u7, (y—XP'C, ;y X,B)-H/,/l,)

(2.16)

3. Illustrative Example

3.1. Simulated Data for Variance-Inflation Model

Consider the simple linear regression model with the intercept term and one slope, that is,
v,i=BtBwx;+te, i=1,,n 3.1
For notational convenience, let

Zl b (yi— Byx) + —% P (2p10 1+ 12091+ 1126 13— B10 o — B10 12)
My =
Zlb? + 0'11(72

and

0 121 b?(yixi— ,Boxi) - ’%_ 02(500'21 + By0 13— 1109 — 1103 — 21430 22)

My =
3 o+ oy
where XY= ( Z“ ?Z). To apply Gibbs sampler, the following full conditional densities are
21 O
needed;
g 0o
[BIIBZ’ bs77 )yls"',yn N(l'lly )
Z b + 0'1102
and
2 Nl
[32'.31,17.7’, ,yl.---,yn]—N(#Q, : )
% b+ o

First we generate the data from (3.1) with #=10, &~N(0,1) for ¢=1,...,10and
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(By, B1)=1(0.5,1). Furthermore, let b;=1 for 71 and b;=0.1. Therefore we assume that

observation 1 is outlier in this data set. We applied Geweke's method to our model with the
indifference prior f(y)=(—%)10 =05 2=0.01 for ¢=1,..,10 and g;=p,=1, v,=1,=0

. Also, set 0= 0p= 1073 for the diffuse prior for B The Gibbs sampler generates 4000

iterations and Metropolis_Hastings algorithm for generating b; is repeated 10,000 times. After
discarding first 2,000 iterations, we use only the variates of remaining iterations. Convergence
of the Gibbs sampler was assessed via Geweke (1992) method, using the CODA (Best, Cowles
and Vines, 1995) suitable of diagnostics in S-plus. In Table 3.1, observation 1 is considered as
an outlier since its corresponding posterior probability is 0.34 which is highest among these
posterior probabilties of all data. Also, observations 1 and 4 may be considered as outliers

since its corresponding posterior is second highest which is 0.22.

Table 3.1.

Posterior

outlier numbers observation .
probability

0 0.00
1 . 1 0.34
1, 2 0.03
1, 3 0.11
1, 4 0.22
1,5

1,9

0.01
0.03
0.03
0.03
0.04
0.02
4 1,2, 3 4 0.01

1,2, 47 0.01

3.2. Darwin’s Data

Consider the analysis of Darwin’s data on the difference in heights of self- and cross-
fertilized plants quoted by Box and Tiao (1973). The data consists of measurements on 15
pairs of plants. Each pair contained a self-fertilized and cross-fertilized plant grown in the
same pot and from the same seed. Arranged for convenience in order of magnitude, the n=15
observations (on differences in heights in eighths of an inch of self-fertilized and
cross—fertilized plants) are: -67, -48, 6, &, 14, 16, 23, 24, 28, 29, 41, 49, 56, 60, 75. Guttman,
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Dutter and Freeman(1978) re-examine the Darwin’s data to detect outlier(s) using Bayesian

approach with the model as follows;
y=f1+e (3.2)

where 1=(1,...,1)! . Like simulated data, convergence of the Gibbs sampler was checked
via Geweke (1992) method, using the CODA (Best, Cowles and Vines, 1995) suitable of
diagnostics in S-plus. Guttman et al (1978) mentioned that observations 1 and 2, having
values -67 and -48, are identified as spurious observations since they have the highest
posterior probability. Table 3.2 show that observation 1 and 2 having values -67 and -48 are
considered as outliers since they have the highest posterior probability 0.54. Also, observations
1, 2 and 7 may be considered as outliers.

Table 3.2.
. . Posterior
outlier numbers observation o

probability

0 0.00

1 0.00

2 1.2 0.54

3 1,27 0.39

128 , 0.02

4 1278 0.05
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