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ABSTRACT

This article presents a multiple comparison ranking procedure for several products
of the Poisson rates. A preference probability matrix that warrants the optimal
comparison ranking is introduced. Using a Bayesian Monte Carlo method, we
develop simulation-based procedure to estimate the matrix and obtain the optimal
ranking via a row-sum scores method. Necessary theory and two illustrative
examples are provided.
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1. INTRODUCTION

Suppose that X ;~P (A for =1,...,K are K independent Poisson random variables
with parameter A obtained from jth population, j=1,...,L. Consider L independent
populations each having single parameter A;,;7=1,...,L, with K=1 and suppose that

there is an interest in the relative magnitudes of A;'s. This is situation arising frequently
in the paired comparison experimental arrangement. Various familiar methods and theories
are possible for solving the problem of the interest. A great deal of work has focused on
the problem of multiple inferences and simultaneous confidence intervals for A,'s (Bauer
(1997), Pennello (1997), Liu, Jamshidian, and Zhang (2004), and references therein).
Bechhofer et al. (1995), Kim and Nelson (2001) developed selection methods for picking the
best population in terms of magnitude of A)'s. Unlike the previous works, of particular
interest of the paper is the multiple comparison ranking of a scalar function
§il) /)=H,K=1/1 #»J=1,...,L, products of K Poisson rates, that may exhibit heterogeneity
both in parameters, &,'s, of interest and in the characteristic of the populations, where
8;i=Ay A, 7=1,..,L.

Harris (1971) and Harris and Soms (1973) among others considered mathematical devices

for the inference of A& 7). However, due to complex distributions involved in their devices,

a multiple comparison among A 8,)’s has not been seen in the literatures. Despite the fact
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that the problem of comparing A J;)’s may arise as a problem of interest in its own right,
the comparison may be of more interest and will presumably be applied more often as
approximate solutions to the problem of comparing the reliability of systems of K
independent parallel components (see, for example, Mann et al. (1975)). This paper proposes
a Bayesian procedure for the multiple ranking of A&;)'s and gives an application which

has been selected for the purpose of motivating the contents of this article.

2. MULTIPLE COMPARISON RANKING METHOD

2.1. The Method

The testing of a set of objects for preference on specific criterion often requires of the
researcher the ability to make very fine sensory discriminations based on complex
distributional theory. To remove some of the complexity associated with simultaneously
comparing several objects, the method of paired comparisons has been widely employed (see
David (1987) and Davidson and Solomon (1973) and references therein). This section
extends the method to the case of simultaneously comparing several parameter functions.

Suppose L parameter functions, A&8,),;7=1,...,L, are to be compared in pairs with data
obtained from L populations, and suppose a LXL matrix 6=1{8,%(a,p=1,..,L),
where @ ,,= Pr(a—p) denotes the probability of preference for A&,) over Adp), so that
Ot 0g=1. We take 0,=1/2 for a=1,...,L. Given the preference probability matrix
0, one can obtain a rank order P of A8;)'s where P=(py,...,p1) is defined (in terms
of preference order) as an arrangement of numbers in the index set {ij=1,...,L} of A4}
's such that p, precedes p,if A8,)—>R8,,). If v(P) denote the number of violations
of the preference probability, that is the number of 8,,,21/2 in @ such that p, precedes

V. in P, then following theorems enable us to obtain an optimal P.

DEFINITION 1. The preference probability matrix @ is said to have a strong stochastic
transitivity property if its elements satisfy the condition given by

0.4=1/2 implies 0,,204, for a,8,¢=1,...,L, 2.n
or equivalently

0.4=1/2 and 64,21/2 imply 6,,= max (0 ., 64,). 2.2)
Condition (2.2) follows directly from (2.1), while an examination of cases establishes that
(2.1) follows from (2.2).
Suppose our interest is to rank a set of parameter functions, AJ,)'s, where AJ,) denotes
a scalar function of &; defined by jth probability model (or population) I7;j=1,...,L, If
a sample is available from each [II;, then following theorem makes § satisfy the strong

stochastic transitivity condition.
THEOREM 1. Suppose paired comparison ranking is conducted according to descending

order of magnitude in A;)'s, and Suppose @= {#,5} is obtained from a proper joint

- 230 -



Dae-Hwang Kim, Hea-Jung Kim

posterior distribution of &;'s such that

- _ 1)7(45 a'M) OlData)
0 s = {IR8 =R D) = 5= S0 Data) + prié pa> O\Data) *

2.3)

where o,8=1,..,.L, ¢ y=R0)~Fu r=a,B, and [fy= Zl/(&)/L. Then &

warrants the strong stochastic transitivity condition. Here p#r(A>0|Data) denotes the
posterior probability of the interval A>Q.

THEOREM 2 (Kim, 2004a). Let P=(p,,...,p;) be a rank order of Ad),/=1,..,L
obtained from @ satisfying the strong stochastic transitivity condition, then there is unique
P and it has o(P)=0(. Moreover, P is equivalent to the ranking according to the
magnitude of row-sum scores, w;'s, of ©, where

Wz(wl,...,WL)’_:@l (24)

and 1 is the column vector of L ones.

3. A NONINFORMATIVE PRIOR FOR THE PRODUCT OF POISSON
RATES

3.1. The Noninformative Prior

Suppose we observe X ; 7=1,...,K, as independent Poisson variables with parameter A ;
obtained from jth population [I; j=1,...,L. The parameter of interest being
8= ML A the product of K Poisson rates of II; Given a parameter vector
8;=(y,...., k)", we seek a noninformative prior x(8;) so that the posterior interval

for A&,;) has a coverage error of only O,(n ') in the frequentist sense. Reasons for

seeking this prior is described in Stein (1985) and he derived nonrigorously a sufficient
condition for such a prior. Through the use of orthogonal parameters, Tibshirani (1989)
gave a general form of the class of priors satisfying Stein’s condition. Using Tibshirani’s
method, we see that the noninformative prior has the form given by

r(8)<g(s;) g/i i Ap0,7=1,..,L, (3.1)
where 8;=(Ay;,...,Ax)" and g(3,)>0 is arbitrary. The derivation of (3.1) is the same as

that for ] £,1 & with @;=1 given in Kim (2004b), and hence it is omitted.
The choice g(8, =1 gives simple form of the prior which attains the asymptotic optimal

frequentist coverage property. The class of prior given in (3.1) may be narrowed down to
the second order probability matching priors as given in Mukerjee and Ghosh (1997). In
contrast with the prior, the uniform prior (the Jeffreys prior), written ., is given by

7ru(6,)odl(8,)| 12 =( szl/l ,‘,‘) _1/2, (3.2)

where X(8)) is the information matrix associated with the likelihood function. Note that =,
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is equivalent to 7, when K=1.

3.2. Comparison of The Priors

An appropriate noninformative prior should have good frequentist properties. Many
authors (Mukerjee and Ghosh (1997); Datta, Ghosh and Mukerjee (2000); Mukerjee and Reid
(1999) among others) suggested and argued those properties. One of them is that the

frequentist coverage probability of a y th posterior quantile should be close to 7. Using a
WMC (weighted Monte Carlo) method, we investigate the property numericall.y for the
priors m, and m, The computation of the frequentist coverage probability of a ¥ th
posterior quantile of A &) is based on the following algorithm. We suppress the index j in
¢, for convenience.

[Algorithm for Calculating the Frequentist Coverage Probability]

Step 1. Given a fixed true &y=(Ay,...,A»), simulate data x; independently from
P (A y) distributions, i=1,...,K.

;Em))';m= 1,2,...,n}, from

Step 2. Obtain an importance sample of size #, {8 = (/11("')' A
an importance function g(8). Then calculate A8 ) =[] KA fm) for m=1,2,...,n.
Step 3. Sort {A8“); m=1,2,...,n) to obtain the ordered values,
RO W)SAB @)= <A8 ().
Step 4. Compute the weighted function w , associated with £#th ordered value f(b‘( ,)).
More specifically, we first compute
L(6(’)lData)no(a(”)/g(S(”)

" 3 L IData)ry(6 ") (6™

3.3

Then rewrite {w,; £=1,2,...,n} as {w(,y £=12,..,n} so that the £th value
w (¢) corresponds to the £ th value A& (,)).
Step 5. Calculate

0 if A8)<AS .,
o= P wy i AEm)SAIDAS man)s 34
1 it A8)2A3 ().

where A8, = Iljlxl o

Repeat Step 1 and Step 5 with #* times, and compute the proportion 7 of p<7 in these
replications.

When the uniform prior x,(8) is used, the posterior distribution is a kemel of the joint

density of £ independently distributed I(x,;+1/2,1) variates:

( data) o< ﬁlAf“l’zexp{—Ai}, 250, i=1,.. k.

Thus the MC sample in Step 2 is directly generated from the posterior distribution
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(8 Data) giving w ,=1/n.

When the noninformative prior (&) is used, the joint posterior distribution is

1/2
n(&data)OC( 21/1 ;1) ﬁlﬁf'exp{—-/l,»}, Ap0i=1,.. K.
The algorithm needs to specify the importance function g(&). The most natural candidate
for the importance distribution is the joint distribution of independent IY{x;+1,1),

i=1, ..., K, variates yielding the weights

w, =( 21/A§1’) * 21( 211/,1 f'">) Y r=l2m (35)

The quantity p is the estimate of the marginal posterior probability of A &) for the
interval (0, ASy)). On the other hand r is the estimated frequentist coverage probability
of the ¥ th posterior quantile. Table 1 shows the estimated frequentist coverage
probabilities of = .05(.95)th posterior quantiles of A& =TI £,1; for various true values,

dg's, of & obtained by using 7z, and x, when K=4.

TABLE 1. Frequentist Coverage Probabilities for .05(.95)th Posterior Quantiles of A6).
K=4
S (1,2,3,4) (1,2,5,5) (5,5,5,5) (556,7) (5,5,10,10) (10,10,10,10)
b .052(.978) 052(.979)  .054(.949) 051(.950) .051(.947) .049(.945)
Ty .022(.901) 026(.914)  .028(.899) 028(.900) .031(.908)  .032(.913)

For the calculations of the entries in the table, » is 10,000 and #"* is 10,000. The

maximum standard errors of estimations p and ¢ are .0042 and .006 respectively.
From Table 1, we see that the frequentist coverage probabilities obtained from using the

noninformative prior 7, are almost close to the desired levels, while those obtained from
using x, underestimates the levels. Table 1 also notes that small-sample (K=4)
frequentist coverage probabilities of x, are uniformly better than those for 7z, in all the
situations. Therefore, the Tibshirani’s asymptotically optimal frequentist coverage prior 7,

is more appealing in the sense of the frequentist property.

4. BAYESIAN ESTIMATION OF THE PREFERENCE MATRIX
4.1. A WMC Method for Calculating the Preference Probability Matrix

In this section we recover the suppressed index j7,j=1,...,L, denoting jth probability model
(or population), to compute the preference probability defined in (2.3).
Using the noninformative priors x(8;), we obtained the joint posterior distribution of &}

’

S

1/2
7r(61,...,6LlData)oclljl<g/i,;l) ﬁl,i’,;“exp{—ai,}, A0, @1
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Suppose paired comparison ranking is conducted according to descending order of

magnitude in A&;’'s. Then we need to estimate 6= {0,) from (4.1) where the

preference probabilities are defined by (2.3). It is seen, from Theorem 1, that @ satisfies the
strong stochastic transitivity condition so that the paired comparison ranking is simply
obtained from the row-sum scores in (2.4). The posterior probability pH(¢ 4> 0lData) in

(2.4) can be expressed as an integral-type posterior quantity of (4.1) so that
ELh {8y, ...8 )\Data)] = [ KA8)—fu>0) (3, ....8 |Data)ds ..., 38 1, (42

where I(R8,)—rFu>0), y=1,...,L, denotes the indicator function. It is seen, from (4.1),
that analytical evaluation of the joint posterior distribution for A &;)’s does not appear
possible. Thus exact calculation of the preference probabilities, @,'s, is infeasible.

Furthermore, as defined in (2.3), @, is a complex function of AJ;)'s. Thus we need a

special computational scheme. We will describe how to apply a weighted Monte Carlo
(WMC) method to overcome these difficulties arising in the paired comparison ranking of

A8,)’s. The method needs to specify an importance function g(&,,...,0.) to get the
WMC estimator of (4.2) with an importance sampling scheme: Let an importance sample of
size n be {(8\™,8 gm 0y m=1,2,...,n}, from the importance function
g(84,...,0), where 6,-(”‘)=(/1 1(,"‘),.. ('")) ,Jj=1,...,L. Then a WMC estimator of (4.2)
is

2;1 w wl(A8 ) = £ 17> 0l Data)

Elh,(5,,..,0 DlData)] == , (4.3)
Zwe
=
where
- ]IjIL(a N\ Data) (8 g(8, ..., 5 87) (4.4)
is the importance sampling weight and fF{" = f; 1}‘(6}"’))/ L. The most natural candidate

for the importance distribution is the joint distribution of independent IXx;+1,1),
i=1,...,K, 7=1,...,L variates yielding the weights

12
( f\w <'">) . m=1,2,..,n. 45)
Using (4.3), we obtain an estimator of the desired preference probability in (2.3):
— ho(64,...,6 DiDat

Elh,(8,,..,6 DData)]+ Elh 4(8,,...,6 D\Data)]’

and hence the estimator of the preference matrix, ®.
Geweke (1939) showed that

Elh,(8,,..,0 DData)}~ELh (8, ...,8 )| Data)], a.s. as n—oo.
This  implies that Elh,(84,....6 )|Data)] is  consistent  estimator  of

E{h(8;,...,8 )Data)], and hence B, is also consistent estimator of @, by the
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properties of the consistent estimators. Therefore, the paired comparison ranking among L
products of the Poisson rates can be conducted by the row-sum scores method based on

the posterior estimator D obtained from the suggested WMC method.
5. ILLUSTRATIVE EXAMPLES

The suggested ranking procedure using #(8;) is applied to a real data set. The data is

selected for the purpose of motivating the contents of this paper. The data is obtained from
Mann et al. (1974, P.498). They used it for calculating nonrandomized lower confidence
bounds on reliability for a series system of three components. Table 3 lists the data where

X My and ¥y, denote, respectively, the number of failures, the number of experiments at
risk, and observed failure rate obtained form independent Bernoulli trials conducted on ith
component in jth system (7=1,2,3; 7=1,2,3,4,5). Thus respective probabilities of system
failure are ¢;=p;;boP3,, J=1,...,5 products of three binomial parameters. The
straightforward modification of the paired-comparison ranking procedure for AJ ]'),S gives
the multiple comparison ranking for ¢;'s. Assuming that Poisson approximation to the
binomial distributions is satisfactory to the user, the modification simply needs to change
with ¢;= A4 ,-)/H ‘,K=1n,-j in (2.3). Using the suggested WMC method with the importance

sample of size #=10,000 (described in Section 4), we estimated the preference probability
matrix = {0 4}, 2, f=1,....,5, for ranking ¢;'s. The estimated preference probability

matrix is given by

.o00 .585 .593 .512 .498
415 .500 .509 .428 .414
©=.407 .491 .500 .419 .405
.488 .572 .581 .500 .486
.502 .586 .595 .514 .500

TABLE 2. The Data Set and Row-Sum Scores

System | Number of Experiments|Observed Failures| Failure Rates Row-Sum
J (15, noj n3) (x4, %0 %30 | (ry, 72, 73) | Scores
System 1 (10, 10, 9) 0,1, 1 (0, 1/10, 1/9) 2.688
System 2 (20, 20, 20) (1, 1, (1/20, 1/20, 1/20) 2.266
System 3 (30, 30, 30) (1, 2, 3) (1/30, 1/15, 1/10) 2.222
System 4 (50, 50, 50) 1, 2 4 (1/50, 1/25, 2/25) 2.627
System 5 (100, 100, 100) (2, 3, 5 (1/50, 3/100, 1/20) 2.697

Calculation of @1 gives the row-sum scores. Resulting row-sum score of each system is
also tabulated in Table 2. According to the row-sum scores, we see that the optimal paired
comparison ranking of five systems is P(5,1,4,2,3) with #(P)=0. Thus the order of
failure probabilities among the five systems is ¢5{ ¢ { P ¢{¢3, and hence we can

conclude that the fifth system is the most reliable system among them.
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