Kim, Tae-Jeong;Choi, Kyu-Hyun;Oh, Tae-Suk;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.96-96
/
2018
최근 기후변동성으로 유발되는 불안정한 기상상태를 효과적으로 관측하고자 기상레이더가 도입되고 있다. 기상레이더는 경험식으로 산정된 Z-R 관계식을 통하여 레이더 강수량을 제시하게 된다. 이 과정에서 레이더 강수량은 필연적으로 실제 지상에 도달하는 강수량과는 정량적으로 오차가 발생하게 된다. 레이더 강수량에 포함된 오차는 다양한 원인으로 발생하게 되므로 레이더 강수량의 오차 성분을 규명하는 것은 레이더 강수량 활용을 위하여 필수적으로 선행되어야 한다. 본 연구는 지상강수량과 레이더 강수량의 편의를 보정하기 위한 확률통계학적 방법론을 개발하였다. 레이더 강수량의 편의오차를 보정하기 위하여 수문통계학에서 널리 활용되고 있는 계층적 Bayesian 구조를 기반으로 하였으며 자료통합(data pooling) 기법을 이용하여 편의보정 매개변수 추정과정의 불확실성 추정 효율성을 증대시켰다. 본 연구를 통하여 개발된 레이더 강수량 편의보정기법은 계층적 Bayesian 구조를 도입함으로써 편의보정 매개계수의 불확실성을 정량적으로 제시하였으며 유역 단위의 강수상관성을 현실적으로 복원하는 것을 확인하였다. 따라서 본 연구에서 제안하는 편의보정기법은 편의보정 과정에서 발생할 수 있는 매개변수의 불확실성 및 레이더 강수량의 오차구조를 정량적으로 규명하여 고해상도의 강수정보를 생산함으로써 고도화된 수문해석을 가능케 할 것으로 판단된다.
Asadi, Sina;Shamshirsaz, Mahnaz;Vaghasloo, Younes A.
Smart Structures and Systems
/
v.26
no.6
/
pp.735-751
/
2020
Identification of structure parameters is crucial in Structural Health Monitoring (SHM) context for activities such as model validation, damage assessment and signal processing of structure response. In this paper, guided waves generated by piezoelectric transducers are used for in-situ and non-destructive structural parameter estimation based on Bayesian approach. As Bayesian approach needs iterative process, which is computationally expensive, this paper proposes a method in which an analytical model is selected and developed in order to decrease computational time and complexity of modeling. An experimental set-up is implemented to estimate three target elastic and geometrical parameters: Young's modulus, Poisson ratio and thickness of aluminum and steel plates. Experimental and simulated data are combined in a Bayesian framework for parameter identification. A significant accuracy is achieved regarding estimation of target parameters with maximum error of 8, 11 and 17 percent respectively. Moreover, the limitation of analytical model concerning boundary reflections is addressed and managed experimentally. Pulse excitation is selected as it can excite the structure in a wide frequency range contrary to conventional tone burst excitation. The results show that the proposed non-destructive method can be used in service for estimation of material and geometrical properties of structure in industrial applications.
Journal of the Korean Institute of Intelligent Systems
/
v.26
no.5
/
pp.335-342
/
2016
When dynamics changes occurred in an existing Bayesian Network (BN), the related parameters embedding on the BN have to be updated to new parameters adapting to changed patterns. In this case, these parameters have to be updated with the consideration of the causalities in the BN. This research suggests a framework for updating parameters dynamically using Expectation Maximization (EM) algorithm and Harmony Search (HS) algorithm among several Meta-Heuristics techniques. While EM is an effective algorithm for estimating hidden parameters, it has a limitation that the generated solution converges a local optimum in usual. In order to overcome the limitation, this paper applies HS for tracking the global optimum values of Maximum Likelihood Estimators (MLE) of parameters. The proposed method suggests a learning and propagation framework of BN with dynamic changes for overcoming disadvantages of EM algorithm and converging a global optimum value of MLE of parameters.
It has been well recognized that extreme rainfall process often features a nonstationary behavior, which may not be effectively modeled within a stationary frequency modeling framework. Moreover, extreme rainfall events are often described by a two (or more)-component mixture distribution which can be attributed to the distinct rainfall patterns associated with summer monsoons and tropical cyclones. In this perspective, this study explores a Mixture Distribution based Nonstationary Frequency (MDNF) model in a changing rainfall patterns within a Bayesian framework. Subsequently, the MDNF model can effectively account for the time-varying moments (e.g. location parameter) of the Gumbel distribution in a two (or more)-component mixture distribution. The performance of the MDNF model was evaluated by various statistical measures, compared with frequency model based on both stationary and nonstationary mixture distributions. A comparison of the results highlighted that the MDNF model substantially improved the overall performance, confirming the assumption that the extreme rainfall patterns might have a distinct nonstationarity.
Journal of the Korean Data and Information Science Society
/
v.27
no.6
/
pp.1645-1651
/
2016
A lot of data, particularly in the medical field, contain variables that have a measurement error such as blood pressure and body mass index. On the other hand, recently smoothing methods are often used to solve a complex scientific problem. In this paper, we study a Bayesian curve-fitting under functional measurement error model. Especially, we extend our previous model by incorporating covariates free of measurement error. In this paper, we consider penalized splines for non-linear pattern. We employ a hierarchical Bayesian framework based on Markov Chain Monte Carlo methodology for fitting the model and estimating parameters. For application we use the data from the fifth wave (2012) of the Korea National Health and Nutrition Examination Survey data, a national population-based data. To examine the convergence of MCMC sampling, potential scale reduction factors are used and we also confirm a model selection criteria to check the performance.
Park, No-Wook;Chi, Kwang-Hoon;Moon, Wooil-M.;Kwon, Byung-Doo
Proceedings of the KSRS Conference
/
2002.10a
/
pp.382-387
/
2002
In this paper, we propose a geostatistical approach incorporated to the Bayesian data fusion technique for supervised classification of multi-sensor remote sensing data. Traditional spectral based classification cannot account for the spatial information and may result in unrealistic classification results. To obtain accurate spatial/contextual information, the indicator kriging that allows one to estimate the probability of occurrence of classes on the basis of surrounding observations is incorporated into the Bayesian framework. This approach has its merit incorporating both the spectral information and spatial information and improves the confidence level in the final data fusion task. To illustrate the proposed scheme, supervised classification of multi-sensor test remote sensing data set was carried out.
Journal of the Korean Operations Research and Management Science Society
/
v.30
no.3
/
pp.137-149
/
2005
This study proposes a framework enhancing the accuracy of estimation for project duration by combining linear Bayesian updating scheme with the learning curve effect. Activities in a particular project might share resources in various forms and might be affected by risk factors such as weather Statistical dependence stemming from such resource or risk sharing might help us learn about the duration of upcoming activities in the Bayesian model. We illustrate, using a Monte Carlo simulation, that for partially repetitive projects a higher degree of statistical dependence among activity duration results in more variation in estimating the project duration in total, although more accurate forecasting Is achievable for the duration of an individual activity.
Journal of the Korean Data and Information Science Society
/
v.27
no.3
/
pp.803-814
/
2016
Recent times have seen an exponential increase in the amount of spatial data, which is in many cases associated with temporal data. Recent advances in computer technology and computation of hierarchical Bayesian models have enabled to analyze complex spatio-temporal data. Our work aims at modeling data of daily average nitrogen dioxide (NO2) levels obtained from 25 air monitoring sites in Seoul between 2003 and 2010. We considered an independent Gaussian process model and an auto-regressive model and carried out estimation within a hierarchical Bayesian framework with Markov chain Monte Carlo techniques. A Gaussian predictive process approximation has shown the better prediction performance rather than a Hierarchical auto-regressive model for the illustrative NO2 concentration levels at any unmonitored location.
Journal of the Korean Data and Information Science Society
/
v.26
no.3
/
pp.749-754
/
2015
This article presents Bayesian approach to regression splines with knots on a grid of equally spaced sample quantiles of the independent variables under functional measurement error model.We consider small area model by using penalized splines of non-linear pattern. Specifically, in a basis functions of the regression spline, we use radial basis functions. To fit the model and estimate parameters we suggest a hierarchical Bayesian framework using Markov Chain Monte Carlo methodology. Furthermore, we illustrate the method in an application data. We check the convergence by a potential scale reduction factor and we use the posterior predictive p-value and the mean logarithmic conditional predictive ordinate to compar models.
Journal of the Korean Data and Information Science Society
/
v.26
no.3
/
pp.755-762
/
2015
One of the main objectives of the U.S. Census Bureau is the proper estimation of median household income for small areas. These estimates have an important role in the formulation of various governmental decisions and policies. Since direct survey estimates are available annually for each state or county, it is desirable to exploit the longitudinal trend in income observations in the estimation procedure. In this study, we consider Fay-Herriot type small area models which include time-specific random effect to accommodate any unspecified time varying income pattern. Analysis is carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. We have evaluated our estimates by comparing those with the corresponding census estimates of 1999 using some commonly used comparison measures. It turns out that among three types of time-specific random effects the small area model with a time series random walk component provides estimates which are superior to both direct estimates and the Census Bureau estimates.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.