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Abstract

In this paper, we propose a geostatistical approach incorporated to the Bayesian data fusion technique for supervised

classification of multi-sensor remote sensing data. Traditional spectral based classification cannot account for the

spatial information and may result in unrealistic classification results. To obtain accurate spatial/contextual information,

the indicator kriging that allows one to estimate the probability of occurrence of classes on the basis of surrounding

observations is incorporated into the Bayesian framework. This approach has its merit incorporating both the spectral

information and spatial information and improves the confidence level in the final data fusion task. To illustrate the

proposed scheme, supervised classification of multi-sensor test remote sensing data set was carried out.

1. Introduction

During the last decade, advances of various data
acquisition techniques have made it possible to compile large
volumes of spatial data from different sources. New methods
for spatial data fusion have been proposed and applied to
handle the greater diversity and volume of modern data sets for
more complex information extraction in the geosciences (e.g.
Bayesian probabilistic approach, fuzzy logic, evidential
reasoning, neural network, etc). In remote sensing fields, these
approaches have been more widely tested and refined with

more rigorous mathematical backgrounds (Lee er al., 1987;

Serpico et al., 1996; Solberg et al., 1996; Solaiman et al., 1999).

A key difference feature of a geoscience data set is the fact
that each observation relates to a particular location in space.
Quantitative knowledge of an attribute value is of little interest
unless the location of the observation (measurement) is exactly

known and accounted for throughout the analysis. The main

limitation of traditional spectral classifiers is that the proximity
of a pixel to a class is computed only in the spectral space,
without any consideration for the spatial coordinates of the
pixel. As a result, classifications often display noisy or
unrealistic features, such as isolated pixels assigned to a
particular class. To overcome this type of drawbacks, various
parametric methods (e.g. Gibbs-Markov random field) have
been developed based on the basis of statistical properties of
the data, such as the mean, the standard deviation, covariance,
and texture (Solberg et al, 1996; Tso and Mather, 1999).
However, since the method contains many parameters which
are difficult to interpret, it is difficult to formulate an effective
method which can correctly infer the parameters for the given
model.

Geostatistics can provide a collection of deterministic and
statistical tools, so that we can better understand the problem
and model the spatial variability (Isaaks and Srivastava, 1989).
It was originally devised to estimate statistical properties on
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unsampled points for delineating ore deposits. But these days
those tools are used not only for estimation of unsampled
points but also for inference for local and spatial uncertainty
estimation (Goovaerts, 1997). In the remote sensing data
processing, geostatistics can be applied for incorporating the
spatial and temporal coordinates of observations in data
processing and assessing the uncertainties.

In this paper, we apply a geostatistical method to Bayesian
multi-sensor data fusion. Geostatistics is applied for
incorporating the spatial coordinates of observations in data. Of
particular interest is the indicator kriging that allows one to
estimate the probability of occurrence of classes on the basis of
surrounding observations. This scheme has its merit to
incorporate various independent information (e.g. spectral
information and location information) afterward and improves
the confidence of data fusion stage. Supervised land-cover
classification using multi-sensor remote sensing data was

applied to illustrate application of this methodology.

2. Methodologies

For supervised land-cover classification, we employed the
Bayesian data fusion method based on smoothed kernel
method and geostatistical indicator kriging (Fig.1). In this
section, we will briefly review the concepts of applied methods.
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Fig. 1 Applied methods in this study.

2.1 Bayesian Framework for
Classification

Supervised

Among various data fusion methods reported in the remote
sensing literature for the classification of multi-sensor image
data, we focus on the statistical approach, especially the
concepts of Bayesian methods for data fusion.

Bayesian probabilistic approach can provide us with a
formalism for reasoning about partial beliefs under conditions
of uncertainty. In this formalism, propositions are given
numerical parameters signifying the degree of belief accorded
them under some body of knowledge and the parameters are
combined and manipulated according to the rules of probability
theory (Moon, 1993; Pearl, 1997).

In a general multi-sensor data fusion, one can suppose that
we have a set of data from m semsors X, (i,)) ,
se{l,--,m} for each pixel (/,j) . The final goal for
classification is to assign each pixel into one of the predefined
information classes @, -+, @, . In a Bayesian formalism, the
relationship between the measwrements and a priori
probabilities is represented by

Plo, | X106, 1)y X (G, 1))
_PX(G )y X G ) | 0 ) P(e0,)

P(X,\ G, )5 X (s 1))
where, P{w,) is a priori probability of class @, and
Plw, | X,(, j)» X, (i, J))is the conditional probability (a

, cefly-n}

posteriori probability) that c_ is the correct class, given the
data X.(i, ), X,(,j) . The image formation model
P(X,G, j)y X, (5, j)| @) is the conditional probability
that X,(i, ), -+, X,,(i,j) is the observed data, given that
o, is the correct class. Each pixel is assigned to the class C
which maximizes P(w,, | X;(, j)y - X, (0, ) -

In most cases, it is very difficult to estimate the joint
conditional distribution P(X,(i, ), - X, j)| @) . If we
assume the measurements from different sensors be
conditionally independent, then we can simplify the
mathematical analysis and computations and the image
formation model can be expressed as a product of sensor-
specific conditional distributions:
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P(X, G ) X D @) = [ [ POXGGL D1 @)

i=1
2.2 Smoothed Kernel Method

In the parametric approach, to get the conditional
probabiliies  P(X,(i, )| w,)---P(X,, (i, )lw,) , we
require certain statistical assumptions. The maximum
likelihood technique is based on the assumption that digital
values to be processed are multi-dimensional nommally
distributed. However, as many researchers have criticized
before, it becomes especially more difficult in the multi-
sensor/source data fusion than in a single source data
processing, An alterative is to adopt a non-parametric method
such as the kernel method or k-nn method that does not make
any assumption about the distribution (Duda ef al., 2000).

In this paper, instead of the parametric method, we have
employed a non-parametric method based on the smoothed
kernel method (Silverman, 1986), which is an improved
version of histogram approach. Given a set of N samples X;
drawn from a statistical distribution p(X), the kemel method
provides a consistent estimate of the related probability density
function p(X) by using an appropriate “kemel function”
k(-) which is applied to each sample considered, ie.,

_ 1 &
p(X)—W;k(X -X)

The shape of the distribution using the kemel method
depends only on the shape of the reference rectangle, or kernel.
In the smoothed kemnel method, a Gaussian “bell-shaped”
curve, instead of a rectangle, is used as a kemel to construct the

empirical probabilistic density function.
2.3 Geostatistical Indicator Kriging

The most difficult and important aspect of the Bayesian
frame is to estimate a priori information. To estimate a priori
probability, the simplest approach is to assume that all classes
have a same a priori probability. Besides, if the training data set
is assumed to be representative of the proportion of different

classes within the study area, the priors can be set proportional
to the sample size. In this data fusion context, one can use a
priori information in various formats, which may include, e.g.
information about sensor-specific noise characteristics or
information about the weather conditions at the time the
images were acquired (Solberg et al., 1996).

In this paper, we adopted a geostatistical indicator kriging to
construct @ priori information proposed by Goovaerts(2002).
In this approach, a priori probabilities are replaced by the
posterioriori probabilities related to the spatial information
obtained by the geostatistical indicator kriging. One can thus
combine the spatial information with spectral information
obtained by smoothed kemel method utilizing the indicator
kriging.

Geostatistics is largely based on a random function model,
whereby the set of unknown values is regarded as a set of
spatially dependent random variables. Spatial correlation
allows making predictions about the property at unsampled
locations from sample data. Kriging, basically a form of
generalized linear regression, is a name for a spatial estimation
technique, that uses the variogram as a model of geological
continuity and estimates unsampled locations on that basis.
Unlike continuous variables, categorical attributes such as land-
cover classes cannot be estimated as a mere linear combination
of neighboring observations. In many situations, the unsampled
location is simply allocated to the same category as the nearest
observation. Qualitative and/or quantitative information about
spatial correlation between categories can be handled by an

indicator algorithm, as long as it is coded into indicator values,

' say 1 if the category is present and 0 otherwise (Goovaerts,

1997). Then, the indicator kriging is used to estimate the
probability for each indicator state of the certain class as a
linear combination of neighboring indicator data.

If we suppose that u(i, j) ,n, denote the data locations and
the number of surrounding training data, respectively, the
indicator kriging system may be wriiten as follows;

P(0,) = P@, [l ) = D Mitgs@,)-i(uz30,)
=1
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where i(u,;m,) is the indicator transformed value (e.g.

0 or 1) of certain class @, at training data location u,, .
Using models of spatial
weights A(u,;@,) are determined by solving the ordinary

dependency, the

kriging system under the unbiasedness condition:

D Mg 0,) =1
a=1

To satisfy the order relations, any probability outside the
interval [0,1] is reset to the closest bound, 0 or 1. Subsequently,
the estimates are standardized by their sum.

3. Experiments
3.1 Data Set Description

To illustrate the proposed method, we applied the technique
to multi-sensor remote sensing data set publicly posted by the
IEEE GRSS Data Fusion Committee. It consists of multi-
sensor remote sensing images related to an agricultural area
near the village of Feltwell (UK) and is the same as considered
in Serpico et al(1996) and Giacinto et al.(2000). A section
(250 by 350 pixels) of a scene acquired by an optical sensor (an
Airtbome Thematic Mapper scanner) and a radar sensor (a
NASA/JPL synthetic aperture radar) was used. As for the
optical sensor data, the six ATM channels corresponding to
Landsat TM channels in the visible and in the infrared
spectrurn band were included. As for the radar data, the nine
SAR channels in the PLC frequency bands and full HH, HV,
and VV polarizations were included. The images, 15 in total,
are filtered and normalized. To compare the experimental
results with previous results, we selected 10,944 pixels
belonging to five agricultural classes (e.g. sugar beets, stubble,
bare soil, potatoes, and carrots) and the data set contains 5,124
training and 5,820 reference pixels.

3.2 Results

In our approach, the training data were used for two
purposes. First, they were used to calculate a priori probabilities

for 5 classes, assuming that we have no spectral information,
until now. The second use was to calculate the conditional
probabilities based on spectral information for 5 classes,
assuming that we have spectral information, which is the same
one as traditional spectral based classification.

To obtain the a priori probabilities for 5 classes, we
performed the indicator kriging, First, each of the 5,124
training data was coded into a vector of five indicators and then
five experimental indicator variograms were calculated. Then,
we obtained the spatial based probabilities at the whole data
locations using indicator kriging.

After obtaining a priori probabilities based on the indicator
kriging, we applied the smoothed kemnel method for
conditional probabilities based on the spectral information, a
value 2% of data range of the spread parameter in the Gaussian
kemel function was selected experimentally as a result of the
training phase. The posteriori probabilities for 5 land~cover
classes were estimated by combining and updating the a priori
probabilities with conditional probabilities. After this step, each
pixel is assigned to certain class which maximizes a posteriori
probabilities.

The classification estimated from the traditional spectral
information based approach and the geostatistics based
classification results are shown in Fig. 2. The kernel and
geostatistics based classification results show more
homogeneous result in each class region than the result based
only on kernel information. The results obtained here were
estimated with the consideration of spatial information, in
addition to the spectral information. However, there exist
classification errors, particularly, on boundary pixels, due to
mixed pixel information along the boundaries between
neighboring fields, as discussed in Serpico et al.(1996).

To quantitatively compare the geostatistics-based
classification results with traditional spectral information based
classification result, we computed producer’s accuracy of each
class, overall accuracy and kappa coefficient (Table 1). With
respect to all classes, classificaion accuracies show
considerable improvements when one combined the spatial

information based on geostatistical indicator kriging with the
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spectral information based on the kernel method. Improvement
is substantial for the carrots class. Combining the spatial
information increases the overall accuracy from 0.875 to 0.923,
while the Kappa coefficient rises from 0.837 to 0.901. The
superiority of the geostatistics based classification over the
purely spectral one is clearly demonstrated in this study.
Compared to previous research results including the
probabilistic neural network and 4-nn method (Seripico et al.,
1996), the overall accuracy and Kappa coefficient show higher
classification performances. Especially, our proposed method
shows the improvement for the bare soil class, which is
important in geological remote sensing. The number of training
and test data for bare soil class is the smallest one of all classes.
Therefore, this could have resulted in a poor classification
performance, if we used only the spectral information (e.g.
kemel based method, PNNs, 4-nn).

sugar beets
stubble
bare soil

potatoes

-
||
]
|
||

carrots

others

(®)
Fig. 2 (a) Kernel based classification result, (b) kemel and

geostatistics based classification result.

Table 1. Class-by-class accuracies, overall accuracy, kappa
coefficient in the classification of test pixels
(PNNS, k-nn results are quoted from Seripico et al.,, (1996)).

Number Kemel and
Class of Ig:snggl geostatistics | PNNs | k-nn
pixels based
G| 043 | 0952 | 0944 | 0978 | 0974
Stubble 1371 0.838 0.903 0.824 | 0.884
Bare soil 555 0.774 0.896 0.796 | 0.760
Potatoes 384 0.798 0.939 0.818 | 0.864
Carrots 967 0.817 0.935 0.893 i 0.871
Overall
accuracy 0.861 0.923 0.886 | 0.898
Kappa
coeft 0.818 0.901 0.850 | 0.869

4. Discussion and Conclusion

In this paper, we applied the geostatistical indicator kringing
to Bayesian data fusion scheme with multi-sensor remote
sensing data. Geostatistical indicator kriging provides us with
tools for modeling the spatial distribution of categorical
variables and estimating probabilities of occurrence of classes
based on surrounding observations. Also, the smoothed kernel
based non-parametric method is applied to obtain the spectral
information. This paper proposed a procedure to combine the
geostiatics based spatial information with the smoothed kernel
based spectral information. As a result, the proposed method
shows considerable improvements in the classification
accuracy, compared to other purely spectral information based
methods. This paper thus proposes a procedure to combine the
geostatistics based spatial information with the smoothed
kemel based spectral information.

To strengthen the applicability of proposed schemes,
extensive experiments will be applied in several study area and
following topics will be included. The performances of the
smoothed kernel method depend on the spread parameter,
which plays the role of a smoothing parameter. Though the
choice of the spread parameter is not main focus of the present
work, we need examine the optimization of the spread
parameter and influence on overall classification accuracy.

The test area chosen for this study was an agricultural land

and consists of homogeneous rectangular land-cover classes.
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However, in many geological applications and urban land-use
applications, there can exist irregularly shaped land-cover
classes (e.g. imegularly exposed rock outcrops and meandering
river). In such cases, most natural patterns are inter-related and
may have multiple values over a complex non-rectilinear
template of locations. Multiple-point geostatistics has been
proposed (Strebelle, 2002) for such complex problems. The
theory of multiple-point geostatistics builds on the established
concepts of traditional geostatistics and can extend into the
image analysis and image reconstruction and furthermore

carries the potential for new data fusion research.
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