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Abstract

A lot of data, particularly in the medical field, contain variables that have a mea-
surement error such as blood pressure and body mass index. On the other hand, recently
smoothing methods are often used to solve a complex scientific problem. In this paper,
we study a Bayesian curve-fitting under functional measurement error model. Espe-
cially, we extend our previous model by incorporating covariates free of measurement
error. In this paper, we consider penalized splines for non-linear pattern. We employ
a hierarchical Bayesian framework based on Markov Chain Monte Carlo methodology
for fitting the model and estimating parameters. For application we use the data from
the fifth wave (2012) of the Korea National Health and Nutrition Examination Survey
data, a national population-based data. To examine the convergence of MCMC sam-
pling, potential scale reduction factors are used and we also confirm a model selection
criteria to check the performance.

Keywords: Functional measurement error, hierarchical Bayes, multivariable, penalized
spline.

1. Introduction

In recent years, the demand for small area estimation and for solving measurement error
problem have greatly increased worldwide. The term “small area” broadly refers to a small
geographical area such as a county. It may also refer to a “small domain”. And statistically
models are established in terms of variables x that for some reason are not directly observ-
able such as blood pressure (BP) and body mass index (BMI). Problems of this nature are
commonly called “measurement error” problem and the statistical models and methods for
analyzing such data are called measurement error model. In the general terminology it is
called structural measurement error model where x is considered as a random variable. This
is in contrast to the functional measurement error model where x is considered non-random
variable. Ghosh and Meeden (1986) conducted empirical Bayesian estimation of small area
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means using a simple one-way ANOVA model. The model could be extended from includ-
ing of covariates, and that procedures have been commented in Ghosh and Meeden (1996).
However, this model is not able to consider the measurement error covariate. Ghosh and
Sinha (2007) developed the small area model with functinoal measurement error covariate.
Recently, Arima, Datta and Liseo (2015) conducted Bayesian estimators for small area mod-
els when auziliary information is measured with error. We developed Bayesian curve-fitting
based on penalized splines with functinoal measurement errors model (Hwang and Kim,
2010; Hwang and Kim, 2015). In our previous paper we considered only one covariate hav-
ing measurement errors. But if there are other useful auxiliary variables that does not have
measurement error, then we need to add this variables as covariates in the model to estimate.
In this paper, our purpose is to develop the multivariable Bayesian curving-fitting model
under functional measurement error. Especially, we consider p covariates and we assume one
covariate has measurement error and others have not measurement error. For non-linear pat-
tern of measurement error covariate, we use truncated polynomial basis functions (TPBF),
this functions are one of penalized splines. Also, we apply fixed knots based on a equally
spaced sample quantiles.

For our model, we carry out a hierarchical Bayesian (HB) approach based on Markov
Chain Monte Carlo (MCMC) methodology. First, we prove the propriety of posterior because
we consider non-informative improper priors for regression coefficients. Section 2 provides
a overview of the model specification and we explain the MCMC application of the HB
procedure in Section 3. In Section 4, we conduct a real data analysis and compare models
based on model selection criteria. Finally, we suggest some possible extensions of our model
in Section 5.

2. Model specification

In this paper, we consider the unit level nested error regression model for estimating small
area means. Also we consider smoothing based on TPBF with one dimension and fixed knots
for measurement error covariate (x1). And other covariates (x2, x3, · · · , xp) are considered
that have a linear relation with outcome variable without measurement error.

Assume m (labelled 1, · · · ,m) small areas are in the data. Let Ni (the known pupu-
lation number) for the ith area and X1ij and yij denote the observed covariate and re-
sponse of the jth subject in the ith area (j = 1, · · · , Ni; i = 1, · · · ,m), respetively. And let
x2i, x3i, · · · , xpi denote observed other covariates that have not measurement error of the
ith area (i = 1, · · · ,m). Then the superpopulation model with all covariates and smoothing
can be expressed as follows.

yij = xTi b+ zTi γ + ui + eij (2.1)

X1ij = x1i + ηij (2.2)

where xi = (1, x1i, x2i, · · · , xpi)T , b = (b0, b1, b2, · · · , bp)T , zi = {(x1i − τ1)+, · · · , (x1i −
τk)+}T , and γ = (γ1, · · · , γk)T . Here, zi presents truncated polynomial basis associated
with the measurement error covariate x1 with k-knots. We presume that eij , ηij and ui are
mutually independent with normal distribution with mean and variance are 0 and σ2

η, σ
2
e and

σ2
u, respectively. In this paper, we replace x1i by X1i = N−1

i

∑Ni
j=1X1ij , and then equation

(2.1) can express an alternative way as follows.
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yij = θi + eij (2.3)

where θi = X
T

i b+Z
T

i γ+ui,Xi = (1, X1i, x2i, · · · , xpi)T and Zi = {(X1i−τ1)+, · · · , (X1i−
τk)+}T . Our goal is to estimate small area means θ = (θ1, · · · , θm)T .

3. Hierarchical Bayesian framework

We execute a HB framework based on equation (2.3) for fitting the model and estimating
small area means as follows.

Stage 1. yij = θi + eij (i = 1, · · · ,m; j = 1, · · · , ni) where eij
iid∼ N(0, σ2

e).

Stage 2. θi = X
T

i b+Z
T

i γ + ui (i = 1, · · · ,m) where ui
iid∼ N(0, σ2

u).

X1ij = x1i + ηij (i = 1, · · · ,m; j = 1, · · · , ni) where ηij
iid∼ N(0, σ2

η).

Stage 3. γ ∼ N(0, σ2
γI) where I is the identity matrix of dimension k.

Stage 4. b = (b0, b1, b2, · · · , bp)T , σ2
γ , σ

2
η, σ

2
u, and σ2

e are mutually independent with

b
iid∼ Uniform(−∞,∞), (σ2

γ)−1 ∼ G(aγ , bγ), (σ2
η)−1 ∼ G(aη, bη),

(σ2
u)−1 ∼ G(au, bu) and (σ2

e)−1 ∼ G(ae, be)

where G(α, β) is a gamma distribution with shape α and rate β parameters

where the function f(x) ∝ xα−1exp(−βx).

Before proceeding with the computations, we confirm the propriety of joint the poste-
rior because we consider non-informative improper priors for regression coefficients b =
(b0, b1, b2, · · · , bp). By the conditional independence properties we factorize the full poste-
rior as follows.[

θ, b,γ, σ2
γ , σ

2
η, σ

2
u, σ

2
e |X,y

]
(3.1)

∝
[
y|θ, σ2

e

] [
θ|b,γ, σ2

u,X
] [
X|σ2

η

] [
γ|σ2

γ

]
[b]
[
σ2
e

] [
σ2
u

] [
σ2
η

] [
σ2
γ

]
Our previous paper (Hwang and Kim, 2010) showed the propriety of the posterior.

The Gibbs sampler that is one of the MCMC numerical integration technique is conducted
for the implementation of the Bayesian procedure. To generate samples from the full condi-
tions of each parameter given the observed data (yij , X1ij , x2i, · · · , xpi) and the remaining
parameters, we find the full conditional distribution for each parameter.

Full conditional distributions for each parameter

(i)
[
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

] iid∼ N
[
(1−Di) yi +Di

(
X
T

i b+Z
T

i γ
)
, σ2
e/ni (1−Di)

]
where Di = σ2

e/
(
σ2
e + niσ

2
u

)
(ii)

[
b|θ,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

]
∼ N

[(
XT

∗X∗

)−1

XT
∗w, σ

2
u

(
XT

∗X∗

)−1
]

where X∗ =
(
X
T

1 , · · · ,X
T

m

)T
, w = (w1, · · · , wm)

T
, wi = θi −Z

T

i γ
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(iii)
[
γ|θ, b, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

]
∼ N

[(
ZT∗ Z∗
σ2
u

+ I
σ2
γ

)−1
ZT∗
σ2
u
t,
(

ZT∗ Z∗
σ2
u

+ I
σ2
γ

)−1
]

where Z∗ =

 (X1 − τ1)+ · · · (X1 − τk)+

...
...

...
(Xm − τ1)+ · · · (Xm − τk)+

, t = (t1, · · · , tm)T , ti = θi −X
T

i b;

(iv)
[
σ−2
e |θ, b,γ, σ2

u, σ
2
γ , σ

2
η,X,y

]
∼ G

[
nt
2 + ae,

1
2

∑m
i=1

∑ni
j=1 (yij − θi)2

+ be

]
where nt =

∑m
i=1 ni

(v)
[
σ−2
u |θ, b,γ, σ2

e , σ
2
γ , σ

2
η,X,y

]
∼ G

[
m
2 + au,

1
2

∑m
i=1

(
θi −X

T

i b−Z
T

i γ
)2

+ bu

]
(vi)

[
σ−2
η |θ, b,γ, σ2

e , σ
2
γ , σ

2
u,X,y

]
∼ G

[
nt
2 + aη,

1
2

∑m
i=1

∑ni
j=1

(
Xij −X1i

)2
+ bη

]
(vii)

[
σ−2
γ |θ, b,γ, σ2

e , σ
2
u, σ

2
η,X,y

]
∼ G

[
k
2 + aγ ,

1
2γ

Tγ + bγ
]

We generate several sets of samples by L chains and 2d iteration for each chain from the
full conditional distribution of each parameter. After sampling, we burn out the first half
sampling d. We take the averaging principle and the mean of the HB estimates over all d
sets.

E (θi|X,y) = E
[
E
(
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

)]
(3.2)

' (Ld)
−1

L∑
l=1

2d∑
r=d+1

[(
1−D(lr)

i

)
yi +D

(lr)
i

(
X
T

i b
(lr) +Z

T

i γ
(lr)
)]

and the posterior variance is estimated as

V (θi|X,y) = E
[
V
(
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

)]
+ V

[
E
(
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

)]
' (Ld)

−1
L∑
l=1

2d∑
r=d+1

(
σ

2(lr)
e

ni
(1−D(lr)

i )

)
(3.3)

+ (Ld)
−1

L∑
l=1

2d∑
r=d+1

[(
1−D(lr)

i

)
yi +D

(lr)
i

(
X
T

i b
d(lr) +Z

T

i γ
(lr)
)]2

− [E(θi|X,y)]
2

4. Data analysis

We studied about the requirement of measurement error model in our previous paper
(Hwang, 2015) based on a real data. In this study, the key feature of our implementation
is that we use additional covariates under functional measurement error model to estimate
small area means based on the same data. We use the data from the fifth wave (2012)
of the KNHANES that is a nationally representative cross-section. This survey has been
systematically executed since 1988 by the Korean Centre for Disease Control and Prevention
(KCDC). Even if this data was collected by multistage probability sampling design we don’t
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consider survey design such as sampling weight. This data include many information such
as demographic (age, gender), lifestyle, personal medical history, family history, lab (BP,
weight, height) information and so on (Korea Centers for Disease Control and Prevention,
2013).

The risk factors of blood pressure are known as age, gender, obesity, consumption of
sodium, potassium vitamin D, tobacco and so on. In this paper, we want to estimate blood
pressure at each small group stratified by age and gender. So, we consider diastolic blood
pressure (DBP) and systolic blood pressure (SBP) as outcome variable and BMI (kg/

√
m2)

as a measurement error covariate. BMI is an attempt to quantify the amount of tissue mass
(muscle, fat, and bone) in an individual, and then categorize that person as underweight,
normal weight, overweight, or obese based on that value. Also we use amount of sodium
(mg/day), potassium (mg/day) and vitamin D (ng/mL)as other covariates without mea-
surement errors.

The number of total subjects for 2012 was 8,058. We take 446 subjects by excluding under
aged 19 years, who had hypertension by taking medication, DBP above 90 mmHG or SBP
above 140 mmHG. Figure 4.1 indicates scatter plots between (SBP and DBP) and BMI.
The real line (—-) is the fitted line from locally weighted scatterplot smoothing. We can see
a non-linear pattern.
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Figure 4.1 Scatter plot between (SBP, DBP) and BMI

To fit models, we run five independent chains (L = 5) with runs of length 10,000 (d =
5, 000) following burn-ins of 5,000 and we give 1.0 for all hyperparameters aγ , bγ , aη, bη, au, bu,
ae and be and 3 for k. We conduct sensitivity analysis by changing value of hyperparameters.
By equation (3.2) and (3.3) we estimate the small area means and standard error based on

sampled data. We confirm the convergence by
√
R̂i (Gelman and Rubin, 1992). And the

mean logarithmic conditional predictive ordinate (LCPO1) of Carlin and Louis (2009) and
the posterior predictive p-value (Meang, 1994) are used for checking the model adequacy. If
the p−values is an extreme value (close 0 to or 1), we can conclude that the model is not fit
well. Otherwise, when the model fit the data well, p−value close to 0.5.
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In this data analysis,
√
R̂ ' 1 for all θi and 4 models (Covariates; Model 1: BMI, Model

2: BMI + vitman D, Model 3: BMI + vitman D + sodium, Model 4: BMI + vitman D +
sodium + potassium). We show the sample size, small area means, standard error (s.e.) for
each strata and (LCPO1) and the posterior predictive p-value are in Table 4.1 and 4.2 for
each outcome variable and models.

In Table 4.1, we can see that SBP of female is generally higher than male for all ages
and we can colclude that Model 2 with BMI and vitamin D for SBP is better than other
models based on both LCPO1 and p-value as 4.527 and 0.458, respectively, even though the
difference is so small. Also we can see that both male and female have the highest SBP in
20’s based on Model 2.

In Table 4.2, DBP of female is also higher than male for all ages but it can be seen that
Model 1 with BMI only for DBP is better than other models based on both LCPO1 and
p-value as 4.306 and 0.459, respectively. And both male and female have the highest DPB
in 50’s based on Model 2.

Table 4.1 Results for SBP

Category ni
Model 1 Model 2 Model 3 Model 3

Means s.e. Means s.e. Means s.e. Means s.e.

20’s Male 26 114.203 1.687 114.639 1.422 114.443 1.445 113.542 1.783

30’s Male 41 103.922 1.565 104.096 1.539 103.475 1.646 103.598 1.587

40’s Male 39 108.959 1.524 108.677 1.367 108.275 1.520 108.416 1.542

50’s Male 28 113.468 1.733 113.836 1.497 114.685 1.735 114.277 1.716

60’s Male 16 106.646 2.196 106.678 1.838 106.545 1.815 106.537 1.813

20’s Female 57 117.417 1.325 118.833 1.325 118.830 1.338 119.044 1.360

30’s Female 68 113.801 1.178 112.841 1.227 113.664 1.215 113.860 1.236

40’s Female 87 118.218 1.064 117.892 1.029 117.513 1.076 117.752 1.090

50’s Female 62 114.380 1.311 114.274 1.214 114.059 1.208 113.802 1.203

60’s Female 22 117.584 2.068 117.509 1.770 118.067 1.716 117.701 1.815

LCPO1 4.553 4.527 4.557 4.564

PPP 0.436 0.458 0.448 0.439

Table 4.2 Results for DBP

Category ni
Model 1 Model 2 Model 3 Model 3

Means s.e. Means s.e. Means s.e. Means s.e.

20’s Male 26 74.805 1.093 74.583 1.050 74.334 1.143 74.432 1.390

30’s Male 41 68.946 1.182 68.902 1.165 68.817 1.290 68.908 1.246

40’s Male 39 72.576 1.018 72.956 1.038 72.403 1.218 72.373 1.210

50’s Male 28 75.726 1.140 75.975 1.107 76.418 1.328 76.277 1.421

60’s Male 16 71.172 1.344 71.671 1.347 71.295 1.431 71.196 1.496

20’s Female 57 73.734 1.009 73.034 1.029 72.957 1.051 72.922 1.061

30’s Female 68 75.201 0.894 75.332 0.864 75.819 0.937 75.810 0.964

40’s Female 87 78.348 0.789 78.416 0.770 78.281 0.794 78.255 0.838

50’s Female 62 78.584 0.903 78.863 0.887 78.776 0.911 78.781 0.953

60’s Female 22 75.983 1.249 75.294 1.352 75.750 1.420 75.962 1.491

LCPO1 4.306 4.332 4.321 4.318

PPP 0.459 0.446 0.444 0.439
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5. Discussion

We develop multivariable Bayesian curve-fitting regression under functional measurement
error model. We demonstrated the availability of measurement error models in our previ-
ous paper (Hwang, 2015). In this paper we show the availability with additional auxiliary
covariates under measurement error model based on the real data. But we don’t consider
some posibility that additional auxiliary covariates (vitiman D, sodium and potassium) also
could have a measurement error, so we will extend multivariable model with p−dimensional
measurement error and q−dimensional non-measurement error covariates. And, outcome
variable (SBP and DBP) also have an easurement error, so we have plan to extend mea-
surement error model with measurement error of covariate and outcome variable. Next, we
consider functional measurement error in this paper and we will develop structural measure-
ment error case. Finally, we consider fixed knots in this paper, so we can extend our model
with random knots.
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