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Abstract

This article presents Bayesian approach to regression splines with knots on a grid of
equally spaced sample quantiles of the independent variables under functional measure-
ment error model. We consider small area model by using penalized splines of non-linear
pattern. Specifically, in a basis functions of the regression spline, we use radial basis
functions. To fit the model and estimate parameters we suggest a hierarchical Bayesian
framework using Markov Chain Monte Carlo methodology. Furthermore, we illustrate
the method in an application data. We check the convergence by a potential scale re-
duction factor and we use the posterior predictive p−value and the mean logarithmic
conditional predictive ordinate to compar models.

Keywords: Functional, hierarchical Bayes, measurement error, radial basis, semipara-
metric.

1. Introduction

We developed the semiparametric small area models with measurement errors models in
our previous paper (Hwang and Kim, 2010). Specifically, we considered small area model by
using penalized splines of non-linear pattern based on truncated polynomial basis functions
and knots on a grid of equally spaced sample quantiles under functional measurement error
model. Measurement error modeling is also related to Goo and Kim (2013).

The truncated polynomial basis functions (TPBF) is simple, but not always numerically
stable when the number of knots is large and the smoothing parameter close to zero. In this
case the computation has to be organized carefully and numerically superior alternatives
are available, like B-splines and radial basis functions (Ruppert et al., 2003).

The objective of this article is to develop alternative estimators of small area means by
using radial basis functions (RBF) with functional measurement error model. RBF is defined
with degree p from Ruppert et al. (2003) as follows.

1, x, · · · , xp−1, |x− τ1|2p−1, · · · , |x− τk|2p−1. (1.1)
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Here k is the number of knots, τ = (τ1, · · · , τk)T is the vector of knot location (τ1 < · · · < τk)
and p is the degree of polynomial pieces.

For our model, we have conducted a hierarchical Bayesian (HB) approach using Markov
Chain Monte Carlo (MCMC) methodology, specifically Gibbs sampling. Before the compu-
tations, we have proved the propriety of the posterior since we have used non-informative
improper priors for some parameters. But we have skipped this proof in this article because
the proof is similar with our previous model.

Section 2 gives a brief overview of the model specification and we discuss the MCMC
implementation of the proposed hierarchical Bayes procedure in Section 3. In Section 4,
we conduct the analysis and compare two models based on a real data. Finally, we discuss
several possible refinements and extensions of our model in Section 5.

2. Semiparametric model under functional measurement errors

In small area estimation, we often use one of two common models, so-called the area
level “Fay-Herriot model” and the unit level “nested error regression model”. In this paper
we deal with the unit level nested error regression model. Also we consider semiparametric
regression using RBF with p=1 and knots on a grid of equally spaced sample quantiles under
functional measurement error model assumed that the covariate is measured with error and
non-stochastic.

Suppose there are m small areas (labelled 1, · · · ,m) and Ni (the known pupulation size)
for the ith area. And let yij and Xij denote the observed response and covariate of the jth
unit in the ith area (j = 1, · · · , Ni; i = 1, · · · ,m), respectively. Then the superpopulation
model with semiparametric regression using RBF under functional measurement error can
be expressed as follows.

yij = xTi b+ zTi γ + ui + eij (2.1)

Xij = xi + ηij (2.2)

where xi = (1, xi)
T , b = (b0, b1)T , zi = {|xi − τ1|, · · · , |xi − τk|}T , and γ = (γ1, · · · , γk)T .

We assume that ui, eij and ηij are mutually independent with normal distribution having
mean and variance are 0 and σ2

u, σ
2
e and σ2

η, respectively. In this paper, we substitute xi by

X̄i = N−1
i

∑Ni
j=1Xij , and we can express an alternative way as follows.

yij = θi + eij ; θi = X̄
T
i b+ Z̄

T
i γ + ui (2.3)

where X̄i = (1, X̄i)
T and Z̄i = {|X̄i − τ1|, · · · , |X̄i − τk|}T . Here, θ = (θ1, · · · , θm)T is the

goal that we want to estimate.

3. Bayesian approach to adaptive model

To fit the model and estimate small area means based on sample (ni is drawn from the ith
area and

∑m
i=1 ni = nt), we conduct a hierarchical Bayesian framework based on equation

(2.3):
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Stage 1. yij = θi + eij (j = 1, · · · , ni; i = 1, · · · ,m) where eij
iid∼ N(0, σ2

e).

Stage 2. θi = X̄
T
i b+ Z̄

T
i γ + ui (i = 1, · · · ,m) where ui

iid∼ N(0, σ2
u).

Xij = xi + ηij (j = 1, · · · , ni; i = 1, · · · ,m) where ηij
iid∼ N(0, σ2

η).

Stage 3. γ ∼ N(0, σ2
γI) where I is identity matrix of dimension k.

Stage 4. b0, b1, σ
2
e , σ

2
u, σ

2
η and σ2

γ are mutually independent with

b0 & b1 ∼ Uniform(−∞,∞), (σ2
e)−1 ∼ G(ae, be), (σ2

u)−1 ∼ G(au, bu),

(σ2
u)−1 ∼ G(au, bu), (σ2

η)−1 ∼ G(aη, bη), (σ2
γ)−1 ∼ G(aγ , bγ)

where G(α, β) denotes an gamma distribution with shape parameter α and rate
parameter β having the expression f(x) ∝ xα−1exp(−βx).

First, we check the priporiety of the joint posterior since we use non-informative improper
priors for the regression parameters b0 and b1. We can factorize the full posterior by the
conditional independence properties as follows.[

θ, b,γ, σ2
e , σ

2
u, σ

2
η, σ

2
γ |X,y

]
(3.1)

∝
[
y|θ, σ2

e

] [
θ|b,γ, σ2

u,X
] [
X|σ2

η

] [
γ|σ2

γ

]
[b]
[
σ2
e

] [
σ2
u

] [
σ2
η

] [
σ2
γ

]
The detail proof of the propriety of the posterior is referred at the appendix in Hwang and
Kim (2010).

We use the MCMC numerical integration technique for the implementation of the Bayesian
procedure, in particular the Gibbs sampler. To generate samples from the full conditions of
θ, b,γ, σ2

e , σ
2
u, σ

2
η and σ2

γ given the remaining parameters and the observed data (yij , Xij), we
calculate the full conditional distribution and generate samples based on these distributions.

Full conditional distributions

(i)
[
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

] iid∼ N
[
(1−Di) ȳi +Di

(
X̄
T
i b+ Z̄

T
i γ
)
, σ2
e/ni (1−Di)

]
where Di = σ2

e/
(
σ2
e + niσ

2
u

)
(ii)

[
b|θ,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

]
∼ N

[(
XT

∗X∗

)−1

XT
∗w, σ

2
u

(
XT

∗X∗

)−1
]

where X∗ =
(
X̄
T
1 , · · · , X̄

T
m

)T
, w = (w1, · · · , wm)

T
, wi = θi − Z̄

T
i γ

(iii)
[
γ|θ, b, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

]
∼ N

[(
ZT∗ Z∗
σ2
u

+ I
σ2
γ

)−1
ZT∗
σ2
u
t,
(

ZT∗ Z∗
σ2
u

+ I
σ2
γ

)−1
]

where Z∗ =

 |X̄1 − τ1| · · · |X̄1 − τk|
...

...
...

|X̄m − τ1| · · · |X̄m − τk|

, t = (t1, · · · , tm)T , ti = θi − X̄
T
i b;

(iv)
[
σ−2
e |θ, b,γ, σ2

u, σ
2
γ , σ

2
η,X,y

]
∼ G

[
nt
2 + ae,

1
2

∑m
i=1

∑ni
j=1 (yij − θi)2

+ be

]
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(v)
[
σ−2
u |θ, b,γ, σ2

e , σ
2
γ , σ

2
η,X,y

]
∼ G

[
m
2 + au,

1
2

∑m
i=1

(
θi − X̄

T
i b− Z̄

T
i γ
)2

+ bu

]
(vi)

[
σ−2
η |θ, b,γ, σ2

e , σ
2
γ , σ

2
u,X,y

]
∼ G

[
nt
2 + aη,

1
2

∑m
i=1

∑ni
j=1

(
Xij − X̄i

)2
+ bη

]
(vii)

[
σ−2
γ |θ, b,γ, σ2

e , σ
2
u, σ

2
η,X,y

]
∼ G

[
k
2 + aγ ,

1
2γ

Tγ + bγ
]

We run L(≥ 2) chains and 2d iteration for each chain. After sampling from the full
conditional distribution, we burn out the first half and use the averaging principle and take
the average of the HB estimates over all the remaining sets to obtain the final HB estimates.
The HB estimator for small area means is approximated as follows.

E (θi|X,y) = E
[
E
(
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

)]
(3.2)

' (Ld)
−1

L∑
l=1

2d∑
r=d+1

[(
1−D(lr)

i

)
ȳi +D

(lr)
i

(
X̄
T
i b

(lr) + Z̄
T
i γ

(lr)
)]

and the posterior variance is estimated as:

V (θi|X,y) = E
[
V
(
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

)]
+ V

[
E
(
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

)]
' (Ld)

−1
L∑
l=1

2d∑
r=d+1

(
σ

2(lr)
e

ni
(1−D(lr)

i )

)
(3.3)

+ (Ld)
−1

L∑
l=1

2d∑
r=d+1

[(
1−D(lr)

i

)
ȳi +D

(lr)
i

(
X̄
T
i b

(lr) + Z̄
T
i γ

(lr)
)]2

− [E(θi|X,y)]
2

4. Numerical analysis

The key feacutre of our implementation is that we use a semiparametric regression model
with a radial basis functions instead of truncated polynomial basis functions. We conduct
the analysis using a real data and compare the result between two models. The analysis is
conducted using R 3.1.3.

The LANDSAT (Land observatory satellites) data is a compilation (by Battese et.al,
1988) of survey and satellite data from the U.S. Department of Agriculture (USDA).This
data was made available by Tobias Schoch with the R package “rsae”. This data on the
areas under corn and soybeans (reported in hectares) in the 37 segments of the 12 counties
(north-central Iowa) have been determined by USDA Statistical Reporting Service staff, who
interviewed farm operators. This data consists of 37 observations and 10 variables (number
of segments per county, hectares of corn and soybean for each sample segment, number of
pixels classified as corn and soybean for each sample segment and so on). In this article
we consider prediction of the areas under corn (OUTCOME) using corn pixels (PixelsCorn)
only as a measurement error covariate. Figure 4.1 is the scatter plot for LANDSAT data and
the real line (—–) indicates the fitted line based on locally weighted scatterplot smoothing.
There is a little non-linear pattern.
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Figure 4.1 Figure scatter plot for LANDSAT data

We conduct five independent chains with runs of length 5,000 following burn-ins of 2,500
and we set all 1.0 for all hyperparameters ae, be, au, bu, aη, bη, aγ and bγ . The small area
means and standard error are estimated using (3.2) and (3.3). We check the convergence

and model adequacy based on
√
R̂i (Gelman and Rubin, 1992), the posterior predictive p-

value (Meang, 1994) and the mean logarithmic conditional predictive ordinate (Carlin and
Louis, 2009), respectively.

In our all case,
√
R̂ ' 1 for all θi and the detailed results are reported in Table 4.1.

We report the sample size, estimates, standard error (s.e.), the posterior predictive p-value
(p-value) and the mean logarithmic conditional predictive ordinate (LCPO1) for each case.
It can be seen that the model with three knots is better for all of two basis functions based
on p-value and LCPO1. Also, TPBS and RBF models with three knots have same model
adequacy by p-value, which is 0.44. And truncated polynomial basis function is better than
radial basis function by LCPO1, which are 5.44 and 5.45, respectively, but the difference is
very small.

Table 4.1 Model fitting results for LANDSAT data

counties ni

Truncated polynomial basis Radial basis
K = 1 K = 3 K = 7 K = 1 K = 3 K = 7

Est. s.e. Est. s.e. Est. s.e. Est. s.e. Est. s.e. Est. s.e.

Cerro Gordo 1 160.22 8.67 150.83 8.28 152.45 9.94 159.66 9.50 152.61 10.51 149.16 13.84
Hamilton 1 97.71 11.14 94.82 10.65 104.03 13.77 102.12 10.97 95.28 11.31 101.07 14.46
Worth 1 106.47 6.40 108.19 8.49 114.35 8.34 107.60 4.97 109.38 12.96 111.44 9.52
Humboldt 2 174.51 11.44 156.46 11.19 155.63 14.22 174.39 12.76 149.87 15.98 154.69 15.62
Franklin 3 140.71 6.12 139.87 8.89 138.09 8.28 139.54 6.49 147.66 7.64 137.24 8.46
Pocahontas 3 100.44 9.27 99.35 9.30 109.38 11.47 103.86 8.53 100.30 9.53 104.07 12.27
Winnebago 3 114.26 7.13 112.38 7.88 114.87 6.04 112.56 7.78 108.66 9.35 115.33 8.53
Wright 3 147.65 6.75 145.73 9.76 145.64 9.66 146.70 7.20 154.69 8.62 144.22 10.34
Webster 4 108.82 5.94 109.60 6.80 114.69 6.41 109.19 4.76 109.45 8.84 113.35 6.78
Hancock 5 112.80 6.52 111.57 6.77 114.67 5.03 111.61 6.68 108.78 7.13 115.25 6.86
Kossuth 5 125.66 6.20 123.94 6.73 119.82 8.86 124.03 6.64 124.93 7.55 118.67 11.14
Hardin 6 113.20 6.60 111.87 6.94 114.82 4.98 111.91 6.87 108.90 7.50 115.39 6.88

LCPO1 5.50 5.44 5.56 5.50 5.45 5.56
p-value 0.43 0.44 0.43 0.43 0.44 0.43
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5. Discuss

We have developed a semiparametric regression model with radial basis functions instead of
truncated polynomial basis functions under functional measurement error model with knots
on a grid of equally spaced sample quantiles of the independent variables. We can extend
our model in several situations. First, we can consider small area models with structural
measurement errors. Second, free knots and another basis functions like B-spline could be
considered. Also, in this paper, we have considered only the normal outcome and covariate
with measurement error. But we can consider the generalized linear model to accommodate
binomial or Poisson data.
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