• Title/Summary/Keyword: Bayesian Procedure

Search Result 174, Processing Time 0.02 seconds

A Study of Bayesian and Empirical Bayesian Prediction Analysis for the Rayleigh Model under the Random Censoring

  • Ko, Jeong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.1
    • /
    • pp.53-61
    • /
    • 1995
  • This paper deals with problems of predicting, based on the random censored sampling, a future observation and the p-th order statistic of n' future observations for the Rayleigh model. We consider the prediction intervals for the Rayleigh model with respect to an inverse gamma prior distribution. In additions, numerical examples are given in order to illustrate the proposed predictive procedure.

  • PDF

Bayesian Procedure for the Multiple Change Point Analysis of Fraction Nonconforming (부적합률의 다중변화점분석을 위한 베이지안절차)

  • Kim, Kyung-Sook;Kim, Hee-Jeong;Park, Jeong-Soo;Son, Young-Sook
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.319-324
    • /
    • 2006
  • In this paper, we propose Bayesian procedure for the multiple change points analysis in a sequence of fractions nonconforming. We first compute the Bayes factor for detecting the existence of no change, a single change or multiple changes. The Gibbs sampler with the Metropolis-Hastings subchain is run to estimate parameters of the change point model, once the number of change points is identified. Finally, we apply the results developed in this paper to both a real and simulated data.

  • PDF

Bayesian Interval Estimation of Tobit Regression Model (토빗회귀모형에서 베이지안 구간추정)

  • Lee, Seung-Chun;Choi, Byung Su
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.737-746
    • /
    • 2013
  • The Bayesian method can be applied successfully to the estimation of the censored regression model introduced by Tobin (1958). The Bayes estimates show improvements over the maximum likelihood estimate; however, the performance of the Bayesian interval estimation is questionable. In Bayesian paradigm, the prior distribution usually reflects personal beliefs about the parameters. Such subjective priors will typically yield interval estimators with poor frequentist properties; however, an objective noninformative often yields a Bayesian procedure with good frequentist properties. We examine the performance of frequentist properties of noninformative priors for the Tobit regression model.

Objective Bayesian Estimation of Two-Parameter Pareto Distribution (2-모수 파레토분포의 객관적 베이지안 추정)

  • Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.713-723
    • /
    • 2013
  • An objective Bayesian estimation procedure of the two-parameter Pareto distribution is presented under the reference prior and the noninformative prior. Bayesian estimators are obtained by Gibbs sampling. The steps to generate parameters in the Gibbs sampler are from the shape parameter of the gamma distribution and then the scale parameter by the adaptive rejection sampling algorism. A numerical study shows that the proposed objective Bayesian estimation outperforms other estimations in simulated bias and mean squared error.

Probabilistic-based assessment of composite steel-concrete structures through an innovative framework

  • Matos, Jose C.;Valente, Isabel B.;Cruz, Paulo J.S.;Moreira, Vicente N.
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1345-1368
    • /
    • 2016
  • This paper presents the probabilistic-based assessment of composite steel-concrete structures through an innovative framework. This framework combines model identification and reliability assessment procedures. The paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The developed model identification algorithm is then presented. During this procedure, the model parameters are automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure performance, considering randomness in model parameters. Since monitoring and characterization tests are common measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained results from the proposed framework, are respectively present.

Bayesian estimation of median household income for small areas with some longitudinal pattern

  • Lee, Jayoun;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.755-762
    • /
    • 2015
  • One of the main objectives of the U.S. Census Bureau is the proper estimation of median household income for small areas. These estimates have an important role in the formulation of various governmental decisions and policies. Since direct survey estimates are available annually for each state or county, it is desirable to exploit the longitudinal trend in income observations in the estimation procedure. In this study, we consider Fay-Herriot type small area models which include time-specific random effect to accommodate any unspecified time varying income pattern. Analysis is carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. We have evaluated our estimates by comparing those with the corresponding census estimates of 1999 using some commonly used comparison measures. It turns out that among three types of time-specific random effects the small area model with a time series random walk component provides estimates which are superior to both direct estimates and the Census Bureau estimates.

Nonparametric Bayesian Multiple Comparisons for Geometric Populations

  • Ali, M. Masoom;Cho, J.S.;Begum, Munni
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1129-1140
    • /
    • 2005
  • A nonparametric Bayesian method for calculating posterior probabilities of the multiple comparison problem on the parameters of several Geometric populations is presented. Bayesian multiple comparisons under two different prior/ likelihood combinations was studied by Gopalan and Berry(1998) using Dirichlet process priors. In this paper, we followed the same approach to calculate posterior probabilities for various hypotheses in a statistical experiment with a partition on the parameter space induced by equality and inequality relationships on the parameters of several geometric populations. This also leads to a simple method for obtaining pairwise comparisons of probability of successes. Gibbs sampling technique was used to evaluate the posterior probabilities of all possible hypotheses that are analytically intractable. A numerical example is given to illustrate the procedure.

  • PDF

The Effects of Human Resource Factors on Firm Efficiency: A Bayesian Stochastic Frontier Analysis

  • Shin, Sangwoo;Chang, Hyejung
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.292-302
    • /
    • 2018
  • This study proposes a Bayesian stochastic frontier model that is well-suited to productivity/efficiency analysis particularly using panel data. A unique feature of our proposal is that both production frontier and efficiency are estimable for each individual firm and their linkage to various firm characteristics enriches our understanding of the source of productivity/efficiency. Empirical application of the proposed analysis to Human Capital Corporate Panel data enables identification and quantification of the effects of Human Resource factors on firm efficiency in tandem with those of firm types on production frontier. A comprehensive description of the Markov Chain Monte Carlo estimation procedure is forwarded to facilitate the use of our proposed stochastic frontier analysis.

Classical and Bayesian studies for a new lifetime model in presence of type-II censoring

  • Goyal, Teena;Rai, Piyush K;Maury, Sandeep K
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.385-410
    • /
    • 2019
  • This paper proposes a new class of distribution using the concept of exponentiated of distribution function that provides a more flexible model to the baseline model. It also proposes a new lifetime distribution with different types of hazard rates such as decreasing, increasing and bathtub. After studying some basic statistical properties and parameter estimation procedure in case of complete sample observation, we have studied point and interval estimation procedures in presence of type-II censored samples under a classical as well as Bayesian paradigm. In the Bayesian paradigm, we considered a Gibbs sampler under Metropolis-Hasting for estimation under two different loss functions. After simulation studies, three different real datasets having various nature are considered for showing the suitability of the proposed model.

Simple Recursive Approach for Detecting Spatial Clusters

  • Kim Jeongjin;Chung Younshik;Ma Sungjoon;Yang Tae Young
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.207-216
    • /
    • 2005
  • A binary segmentation procedure is a simple recursive approach to detect clusters and provide inferences for the study space when the shape of the clusters and the number of clusters are unknown. The procedure involves a sequence of nested hypothesis tests of a single cluster versus a pair of distinct clusters. The size and the shape of the clusters evolve as the procedure proceeds. The procedure allows for various growth clusters and for arbitrary baseline densities which govern the form of the hypothesis tests. A real tree data is used to highlight the procedure.