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Simple Recursive Approach for Detecting Spatial Clusters

Jeongjin Kim1), Younshik Chung?), Sungjoon Ma3), and Tae Young Yang?

Abstract

A binary segmentation procedure is a simple recursive approach to detect clusters
and provide inferences for the study space when the shape of the clusters and the
number of clusters are unknown. The procedure involves a sequence of nested
hypothesis tests of a single cluster versus a pair of distinct clusters. The size and
the shape of the clusters evolve as the procedure proceeds. The procedure allows for
various growth clusters and for arbitrary baseline densities which govern the form of
the hypothesis tests. A real tree data is used to highlight the procedure.
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1. Introduction

A binary segmentation procedure is a recursive binary partitioning tool. This paper focuses
on the procedure to detect multiple clusters and inferences of spacial problems, when we don’t
have knowledge about the study space covered by the clusters and the number of clusters.
One of the characteristics of the procedure is that the size and the shape of the cluster vary
as the procedure proceeds. Therefore the procedure can detect clusters of any size, located
anywhere in the space. Our procedure also locates clusters of high and low rate
simultaneously.

The proposed binary segmentation procedure for spatial data involves a sequence of nested
hypothesis tests of a single cluster versus a pair of distinct clusters. For each test, the null
hypothesis of a single cluster implies that the data within the region arise from a common
density. For the alternative hypothesis, we split the region into the two ‘most distinct’ clusters
and assume distinct densities for each. If the test suggests the alternative hypothesis, the
region is split accordingly. For each resulting cluster, splitting and testing continue until no
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more clusters are found. If at any- stage, the test suggests the null hypothesis, we then
estimate the density in that cluster. The manner in which a region is split is somewhat
flexible; it is dictated by the specification of a growth cluster. The size and the shape of the
clusters evolve as the procedure proceeds. The procedure also allows for arbitrary baseline
densities which govern the form of the hypothesis tests. In this paper, we illustrate the use of
rectangular growth clusters and Poisson densities.

In the testing step, we consider a finite number of rectangular clusters, and choose the two
distinct clusters for which the likelihood is maximized. Testing can be carried out using the
Bayesian information criterion (BIC) (Schwarz 1978). However, as derived by Raftery(1995),
the asymptotic theories for the BIC do not apply when discrete parameters are considered as
here. Instead, we provide the pseudo-BIC for accounting this problem, and it works well in
practice even if it is not theoretically justified. We provide a supporting evidence through a
simulation study. Once the clusters are obtained, the pseudo-BIC is calculated. If the
pseudo-BIC is positive, then the null hypothesis is rejected and the region is split accordingly.

An alternative general procedure for classifying data into categories is the method of
classification and regression trees (CART); see Breiman et al. (1984). In the tree-based
approach, it is generally considered appropriate to first partition the data completely, and
second, to prune segmentations based on some cost-complexity measure. However, the binary
segmentation procedure terminates the partitioning when the partition process fails to attain a
threshold of some target criterion. An advantage of the binary segmentation approach over
CART is its simplicity with respect to computation. Yang (2005) provides a tree-based
method for grouping multinomial data according to their classification probability vectors. The
tree-based model is illustrated on grouping many DNA sequences.

Another general approach which can be used in partitioning problems is mixture modelling.
Mixture modelling requires the specification of parametric models whereas the recursive
approaches considered in this paper are often described as nonparametric. When the number of
components is unknown (which is the case in the problems considered here), mixture
modelling becomes more challenging and often requires Markov chain Monte Carlo (MCMC)
methods for parameter estimation. An introduction to mixture modelling is given by
Titterington, Smith and Makov (1985), Kim and Mallick (2002), van Dyk and Hans (2002) and
Shlattmann, Gallinat and Bohning (2002) provide examples of mixture modelling approaches.

Binary segmentation procedures have been considered by various authors. Scott and Knott
(1974), and Chen and Gupta (1997) developed methods to split normal data into homogeneous
groups. Subsequently, Braun and Miiller(1998), Yang and Kuo (2001), Yang (2004), and Yang
and Swartz (2005) developed binary segmentation procedures for locating change points with
respect to DNA sequencing, homogeneous Poisson processes, sporting performances, spatial
intensity and quantal response curves respectively. Consistency issues related to binary
segmentation have been studied by Vostrikova (1981) who proved consistency for locating the
number of change points in a multi-dimensional random process under mild conditions.
Venkatraman (1992) addressed consistency issues for the procedure when the change points
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are allowed to approach one another.

In Section 2, the procedure is developed using rectangular growth clusters with Poisson
data. In Section 3, the approach is illustrated using the longleaf-pine data (Cressie, 1993). A
simulation study is also carried out to investigate the performance of the pseudo-BIC.
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Figure 1 : Agglomeration methods for combining quadrats into rectangle clusters.
2. Binary Segmentation Procedure

We divide the study space into an IxJ grid of quadrats g(i,7) where i=1,:,I and
7=1,---,]. The quadrats serve as the building blocks which are combined and ultimately
form the various clusters in the study space. Let C,(7,7) denote the rectangular growth
cluster of size 7 centered at ¢(7, 7). More precisely, C,(7,7) is the collection of quadrats

‘ C5,D={q(s,®): max(1,i— ) <s<min(J, i+ ») N max(l,;— » <t<min({J, j+ )}.

Graphs (a) to (c) in Figure 1 illustrate C;(7,7) and C,(7,7) centered at several locations
g(i,7). Note that when the boundary of a region is irregular (ie. not a rectangle), growth
clusters for the region are restricted to quadrats that lie within the region. Hence, when the

region is irregular, some growth clusters will not be rectangular. Also, since there are only a
finite number of quadrats, there are only a finite number of growth clusters.
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For every quadrat g(i,7), there is a count z(7,j) corresponding to the number of events
occurring in the quadrat. We assume that 2z(7,7) follows a Poisson distribution. Let V be a
set of all district quadrats and #( V) be a number of all district quadrats within the region of .
interest. For each potential cluster, we consider two models 2(s, H~ Poisson(d ;) if ¢(s, )
belongs to the corresponding cluster and z(s,t)~ Poisson(4,) otherwise. We calculate the
maximum likelihood under the null hypothesis H;:1;=A4,=4; and the maximum likelihood

under the alternative hypothesis H:A,#A4,. The likelihood under H, is proportional to

2(i, )
L (Ap)=4 0""’1" " exp(— n(V)A 0) Which is maximized at

- 201, 7)
T,= (%:Ev n(’V) ) (1)

Under H,, the likelihood is proportional to

(s,t)e

. — z(s, _ z(s, ) .
L l(c '(l’j)’ A L 4 2) (s, t)EyLC,(i,i)(/1 1 exp(~4 1))>< ]J\C,(i,i)(/1 2 exp(=4 2))
For fixed C,(3,J), the profile likelihood L;(C; 5 A;A43) is maximized at

. 2(s, ) (s, 1)
—~ (EX /AN CN)) and o= (s, )€PNC, ()
=

=TV C G ) 2W(VNC (4,7
where n(VNC,i,7)) and #n(V\C i, j) are the number of quadrats belonging and

no-belonging to C,{7,7) respectively. The fully maximized likelihood L,(C, A;, A,) is then
obtained by maximizing the profile likelihood over i=1,-,1I, j=1,---,Jand . We have

discretized indices 7,7 and #» which yield a finite search.
The asymptotic theories for the BIC do not apply when the discretized rectangular cluster is
considered as a parameter. We propose a pseudo-BIC to account for this problem;

BIC=logL ,(7C, Ay, Ay)—logL ,(7Ay) le*(ql-qo)log( (;}E‘,Z(i,i)) 2

where a positive (negative) value determines H,;( H;). We provide a supporting evidence of

the pseudo-BIC through a simulation study. The third term in (2) is a penalty function
which adjusts for the difference in dimensionality between the two models. In this application,

go=1 and we set g,=5 with respect to C, //1\1 and 7,.
If H; is accepted, then a final cluster has been determined which includes all of the
quadrats within V. However, if H, is rejected, the data set is divided into quadrats which lie

in C and quadrats which lie outside of "C. The testing procedure is then carried out on
each of the two subregions. The algorithm continues in this fashion and terminates when no

more splitting takes place. Whenever a test suggests the null hypothesis, we estimate 71\0 as



Recursive Approach for Detecting Spatial Clusters 211

in ().

- "o LR 81 18 0§
w4 bl i o wL ¢ 1 JAR] olHglls
1 T ] T
& 80 100 10

Figure 2: Simulated successes (0) with number of trials ().
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3. Numerical Examples

3.1 Simulation result for the pseudo-BIC

We note that the asymptotic theories for the BIC do not apply to discretized parameters.
We provide a supporting evidence of the pseudo-BIC for a discrete changepoint case through
a simulation study. We note that the pseudo-BIC in (2) works well in practice even if it is
not theoretically justified.

We use the IMSL RNBIN routine to generate random successes from a binomial density
with the same number of at-bats as in Javy Lopez’'s 1998 Major League Baseball season
(Yang 2004). To investigate the performance of the binary segmentation procedure based on
the pseudo-BIC, we set the success rate

p(6)=0.35 I(t=[1,441)+ 0.2 (t=[45,86]) + 0.4 K(t=[87,131]),
where I(E) is the indicator function of event E. There are two change points, at the 44th

trial and the 86th trial, and three associated success rates; 0.35, 0.20 and 040. The simulated
data are plotted in Figure 2, where the game number is plotted against the number of
successes with the number of trials.

In Figure 3, we present the step by step results of the binary segmentation procedure
using the pseudo-BIC for splitting the data. In this case, change points are obtained at the
44th and 86th trials with associated success rates 0.35, 0.16, and 0.42. This agrees fairly well
with the underlying model.

[1,131] B=1.22

[87,131]

Figure 3 : Results of the binary segmentation procedure applied to the simulated data using
the pseudo-BIC criterion
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3.2 Real data analysis

We consider the spatial clustering of longleaf-pine trees located in a 4 hectare region (200
meters by 200 meters) in Thomas County, Georgia. The data are taken from chapter 8 of
Cressie (1993). The circles in Figure 4 give the locations of 584 trees that are at least 2 cm
in diameter when measured at breast height. An interesting problem is to determine clusters
of these trees with respect to their frequency in the study space.

Table 1 : Clusters of quadrats for the longleaf-pine data.

Notation of cluster Quadrats Shape of cluster
cluster A c,(17,16) {q(3, ):13<i<21N12<7<20} square
subcluster Al C,(14,13) {q(7,7):13<i<16N12<5<15} square
subcluster A2 C,(17,20) {4(i, H:15<i<19N18<<20} rectangle
cluster B Cs(4,17) {q(i,):1<i<12N11<;<25} rectangle
cluster C C,(22,14) {q(7, ):22<i<24N12< <16} rectangle
subcluster C1 C,(22,15) {a(7, 1):22<i<24N13</<16} rectangle
cluster D Cyp(11,1) {q(4, ):1<i<21N1<j<11} rectangle
cluster E C,(25,24) {q(3, /):23<i<25N22<;<25} rectangle

We divide the forest into a 25x25 grid of quadrats ¢(¢,7) where 7=1,--,25 and

7=1,-,25. Hence the quadrats are squares of size 8mx8m, and the average number of
trees per quadrat in the study space is 0.93. Figure 4 also displays the final clusters obtained
using the proposed binary segmentation procedure. We note that we have applied the
procedure to finer grids (e.g. 30x30, 40x40 and 30x40) and have obtained similar results.

The steps in the binary segmentation procedure are illustrated in Figure 5. Using
rectangular growth clusters, the first cluster (cluster A) is identified with the largest BIC
value (26.1) amongst all candidate clusters. Therefore the study space is tentatively divided
into cluster A and the complement of cluster A within the study space. The procedure
continues within each of the two subregions as follows: (i) Outside of cluster A, cluster B is
identified with the largest BIC value (19.4) amongst all candidate clusters. Therefore the
complement of cluster A is tentatively divided into cluster B and the remaining space outside
of both cluster A and cluster B. (ii) Inside cluster A, cluster Al is identified with the largest
BIC value (5.3) amongst all candidate clusters. Therefore cluster A is tentatively divided into
cluster Al and the complement of cluster Al within cluster A. We continue in this fashion
until no more splits are accepted. Table 1 provides a detailed description of the final clusters
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obtained using the binary segmentation procedure. Figure 6 displays the estimated Poisson
rates for each of the final clusters. We observe considerable differences in the cluster rates
when compared to the overall rate 0.93.

Figure 4 : Locations of 584 trees in the 4 hectare study region with the clusters and
subclusters obtained by the binary segmentation procedure.
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Figure 5 : Sequential clusters from A to E with the corresponding BIC values (values inside
parentheses) from the binary segmentation procedure. Cluster A includes subclusters
Al and A2 sequentially, and Cluster C includes subcluster
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Figure 6 : Estimated Poisson rates for clusters obtained on the longleaf-pine data using the
binary segmentation procedure.
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