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A Study of Bayesian and Empirical Bayesian
Prediction Analysis for the Rayleigh Model
under the Random Censoring!

Jeong Hwan Ko!?

Abstract This paper deals with problems of predicting, based on the random
censored sampling, a future observation and the p-th order statistic of n' future
observations for the Rayleigh model. We consider the prediction intervals for the
Rayleigh model with respect to an inverse gamma prior distribution. In additions,
numerical examples are given in order to illustrate the proposed predictive
procedure.

1. Introduction

An important problem in life testing which has received much attention in
recent years is that of predicting the lifetimes of unused components and the
lifetime of a system.

Several distributions have been introduced and discussed for this problem with
a Bayesian point of view. Dunsmore(1974) discussed this problem when the
underlying distribution is one- or two-parameter exponential distribution.
Lingappaiah(1986) proposed the Bayesian prediction in exponential life-testing
when sample size is a random variable. Chhikara and Guttman(1982), Nigm
and Hamdy(1987), Sinha(1989) suggested the Bayesian inference about
prediction for inverse Gaussian, lognormal and Pareto distribution, respectively.
Clarotti and Spizzichino(1989) proposed the Bayesian predictive approach in
reliability theory. We also deal here with the prediction analysis based on the
parametric empirical Bayesian method. This method was studied by Efron and
Morris(1973a, 1973b) and Morris(1983). Also Miller(1989) worked on a
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parametric empirical Bayesian analysis for tolerance bound.

Let 7, T,, ---, T, be independent and identically distributed (i.i.d.) random
samples lifetimes of n items with the probability density function f(.) and
reliability function F(-). Let C, G, ---, C, be i.i.d. censoring times of the
items with probability density function g(-) and continuous distribution function
G(-). It is assumed that 7, and C, are mutually independent. We only are able
to observe the time X, and the censoring indicator §, on the ith trial, where

X, =min(T,C)
and
I, if TG
6;=I1[T <£C]= ]
0, if Z7>C .

In this paper, we consider problems of the Bayesian and the empirical
Bayesian prediction analyses for future observations under random censoring
scheme.

In Section 2, we derive the predictive density and the prediction intervals of a
future observation or the p-th order statistic of n' future observations for the
Rayleigh model under the Bayesian approach.

In Section 3, we deal with the empirical Bayesian prediction approach for the
Rayleigh model with respect to an inverse gamma prior distribution.

In Section 4, Numerical examples are given in order to illustrate the proposed
predictive procedure.

2. BAYESIAN PREDICTION APPROACH

Let ¥ be a random variable following the Rayleigh distribution,
R(c?),whose probability density function(pdf) is given by

f(xlc)=—)—c—exp(—i2—), 0<x<oo. 2.1
G2 202

Now to predict for a future observation y, it is necessary to derive the
Bayesian predictive density function for y, Under the random censoring, the
likelihood function for a sample size n is

_ IIxi Zxt+ Txf
L(c|§)=ffl‘l—)l—lexp —i-2;2—02— , >0, (2.2)
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where | Dl[ is the number of elements in the set of individuals whose lifetimes
are observed D and D, is the set of individuals whose only censoring times are
available.

As a prior distribution for g, we consider an inverse gamma prior
distribution, /G(a.,p), with the probability density function
exp(—-1/Bo2)
I'(a)Bec2@’

Then one can obtain easily the posterior density of o given Y =x which is

[T(cle,B) = a,f >0, c >0. (2.3)

given by
. T2 +2)/ 'Dyi+a+1/2 1 T2+2
[I(elx) = U )[B} — exp(—B )
L(|Di|+a +1/2)2immer G 2(Diva+t) 2Bc2 2.4)
a,p>0 o>0,
where 72 = in2+ Zx,?.
ieD, ieD,
The distribution of a future observation y given ¢ is
2
f(y|0)=%exp(——y—2} 6>0, 0<y<oo. (2.5)
c 20

Thus the predictive density function for y can be obtained and is given in the
following theorem.

Theorem 2.1. With an inverse gamma prior with parameters o and p for g,
the predictive density function of y given x =y is

20D |+ +1/2 T? +2)Pika-12
(| ll )yB(B \'Dll+a+l/2) 4 a’B>O y>0' (2’6)

(BT* +2+By”)
Now we want to construct the prediction intervals for a future observation. If
an inverse gamma prior with parameters ¢ and B for g is used, the 100(1-r)%
equal-tail prediction interval (C,,,C,, ) for y is

[T(ylx) =

( BT;+2 {(1—r/2)-tiDiva+12 -1}, ——BTE;Z {(r/2)-1prvesii2 — 1})

The 100(1-r)% most plausible Bayesian prediction interval (Mg, M) for y
can be obtained by solving simultaneously the followings :
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( BTZ +2 )1)|+a+l/2 —( BTZ +2 )iD1|+u+l/2 .

ME, +PpT2+2 M, +pT2+2
and
BTz + 2 + BMéU iDij+a+3/2 B Méu
BT?+2+BM, M,

Also the distribution of the p-th order statistic, ¥, of n’ future observations is

1 (' - p+1)y?
S mlo) = ; = CXP(- £- 2%
B(p,n —p+1)_<52 202

2 pl
X{l - exp(—%%]} s Y= 0,1sp<n’, 2.7)
o

Hence the predictive density function of ¥, can be obtained and is given as
follows :

Theorem 2.2. With an inverse gamma prior for g, IG(a,B), the predictive
- density function of the p-th order statistic, ¥, of n’ future observations is given
by

H(y(p)|£)= B(p,n’—p-f—l) s i

x{BT? +2+(n' — p+1+i)Byl, 2D 1y 50, (2.8)

2B /D O7 2

For an inverse gamma prior with parameters o and B for &, the 100(1-)%
equal-tail prediction interval of the p-th order statistic of n’ future observations
can be obtained by solving the following equations :

p-1

r_ 1 p_l 1N (! -1
E—B(p,n’—p+l),~=zo( j )( DO =prled

\, . (Dji+a+1/2)
1=l 1+ (' -~ p+1+0)BCE,
BT? +2

and
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-1

r._ 1 p—l 1N -1
E_B(p,n'—p+1)§[ ; ]( )(n' — p+1+i)

' . (Dil+a+1/2)
(1+(n'——p+l+z)BCéU)

BT +2

Also the 100(1-r)% most plausible Bayesian prediction interval (Mg, M)
for ¥, can be obtained by solving the following equations :

&(p-1)
L S P 1y - p 14y
B(p>n'_p+l)i=0 1
. (D +a+1/2)
l_}_(n’—p+1+1)BMéL
‘ BT?+2
1 & p—l i =1
- -)'(n'-p+1+
B(p,n'—p+1)§( i )( Jor=prl+d
. -(Dif+a+1/2)
(1+(n’——p+1+1)[3MéU)

BT +2
=1-r
and
=fp-1 ; (”'_P+1+i)[3M(2;L -(Dyj+a+3/2)
Mg, D L
=0\ ! BT*+2
& -1 . r_ . 2 \~(D+a+3/2)
p o (W= p+1+DBMZ,
=M —1)| 1+
o L O

3. Empirical Bayesian Approach

For the Rayleigh distribution under the random censoring, [](o|x) is derived
in (2.4) when the prior distribution is an inverse gamma with parameters ¢ and
B given in (2.3). Also the Bayesian predictive density function for y is
obtained in (2.5). Under the parametric empirical Bayesian approach, it is
necessary to estimate the unknown parameters from the past data X, X, X,
The estimation methods are various and here we will use the maximum
likelihood estimation.

Let X, X,,---, X, be n past random samples from the Rayleigh model whose

probability density function is given by (2.1). Now the likelihood function
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under the random censoring is

Hx {I"(a +5/ 2)}10,, {r((l +3/ 2)}|Dz 2\D1l(u+3/2)2‘D2|(a+1/2)
L(a,Blx)="2

b

2 a+5/2 2 a+3/2
rypef Pr2] o Brr2 3.1)
e\ P ied\ B

where |D,| is the number of observations in the set D,, i =1,2.

In order to obtain the maximum likelihood estimators of ¢ and B, one must
compute the first partial derivative of the log-likelihood function. Therefore,
the MLE's ¢ and f; of o and @ can be obtained by simultaneously solving

Z( IDI {Z( |D2,}

0= x; IDI x; ?DI 3.2
-——{2( i {Z( ! -2
ieDy ieD, B
and
D I‘F(a+5/2) 4D 2|F(a+3/2) nlogz—nf(—‘f‘l
+5/2) T(G+3/2) I'(a)
= T log(Px? +2)+ 3 log(Bx? +2).

ieDy ieDy
Now the empirical Bayesian predictive density function of y can be obtained
via replacing o and g by & and §.

Theorem 3.1. If an inverse gamma prior with parameters o and g for ¢ is

used, then the empirical Bayesian predictive density function of a future
observation y is given by

2(D+6 +1/2)By(BT? + 27417 0 (3.3)
(l’:‘;T2 +2+ ﬁy2 )*Dmamz Y= ’

[1(yx)=

where ¢ and ﬁ are the solutions of the equations (3.2).

Theorem 3.2. For an inverse gamma prior with parameters o and g for ¢ in
(2.3), we obtain the predictive density function for the p-th order statistic, ¥,
of a future observations given by
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2B(D)|+a+1/2)y,,(BT? +2)2*%2 g (p_2)

M(y,lx) = — Y]
" B(p,n' = p+1) 2 |
(BT +2+(n' — p+1+ DBy}, y >0 (3.4)

Therefore one can obtain the following remark by using Theorem 3.1. and
Theorem 3.2.

Remark. Under the empirical Bayesian approach, the 100(1-r)% equal-tail
prediction interval and most plausible Bayesian prediction interval are identical
with the cases of Bayesian approach by substituting o and B with g and ﬁ,~

respectively.

4. Numerical Examples

The predictive density function and prediction intervals may be changed due
to the selection of prior distributions and the two approaches. Thus in this
section, we study the difference of two approaches and the prior-robustness.

To predict a future observation or the p-th order statistic of n' future
observations, the data were generated artificially from the Rayleigh model with
parameter o2 = 4 under the random censoring. They are listed in Table 4.1.

Table 4.1. Random Sample of size 25 from R(o)
under the Random Censoring.

2.240287 765290  1.163300  2.659954 1.982586*
3.425865 1.683482  3.097933 .644166 = 1.371086*
4.141332 .594661* 1.795982  3.954805  4.027264
3.598400 1.028340 753993 4.383654  2.118047
533241  4.152646 930757  2.253767*  1.841201*

* denotes a censored observation

Under the data in Table 4.1, to see the difference between Bayesian and
empirical Bayesian approach in the equal-tail and the most plausible prediction
intervals, the 95% equal-tail and the 95% most plausible prediction intervals
with respect to an inverse gamma prior IG(1,2) are derived and are given by

(Cy1»Coy) = (14589, 5.7719), (C,,,C,,)=(.4541, 5.7623)
(Mg, Mg,)= (2067, 5.2594), (M,,, M,,)=(.2036, 52238)

respectively. Also both prediction intervals for the p-th order statistic, Y

of
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n' future observations are computed under two approaches and are listed in
Table 4.2. From these results, we can say that there are no much differences
between Bayesian and empirical Bayesian approaches for the equal-tail and the
most plausible prediction intervals. Also, for study on the prior-robustness with
the same data, we consider several values of the parameters o and B of an

inverse gamma prior distribution, i.e. ¢ = 0.5, 1.0, 1.5, 2.0, 2.5 and B

= 1.0,

2.0, 3.0, 4.0, 5.0. With these values, the prediction intervals are computed and
are given in Table 4.3. From Table 4.3, as both the values of o, and B change,

one can say that the prediction intervals are relatively insensitive to the changes
of the prior distribution.

Table 4.2. Prediction Intervals of }( » (y=0.05)

Prior

X

P)

1

2

3

4

5

1G(1,2)

M.P.
E.T.

(.0639,1.6493)
(.1433,1.8124)

(.3760,2.2003)
(.4508,2.3144)

(.6633,2.6345)
(.7361,2.7386)

(.9278,3.0382)
(1.0023,3.1424)

(1.1823,3.4431)
(1.2608,3.5521)

E.B.

M.P.
E.T.

(.0654,1.6632)
(.1451,1.8253)

(.3831,2.2168)
(.4569,2.3282)

(.6756,2.6524)
(.7466,2.7527)

(.9451,3.0572)
(1.0172,3.1566)

(1.2046,3.4632)
(1.2801,3.5666)

Table 4.2. Prediction Intervals of y for the Prior ¢ and B (y=0.05)

o B 1 2 3 4 5

05 | M-P. | (.2092,5.3369) | (.2086,5.3227) | (.2084,5.3180) | (.2084,5.3156) | (.2083,5.3142)
E.T. | (.4653,5.8584) | (.4040,5.8428) | (.4636,5.8376) | (.4634,5.8349) | (.4633,5.8335)

1o |M-P-[(2073,5.2734) | (:2067,5.2594) | (.2065,5.2547) | (.2064,5.2524) | (.2064,5.2510)
E.T. | (.4601,5.7874) | (.4589,5.7719) | (.4584,5.7668) | (.4582,5.7642).| (.4581,5.7627)

15 |MP.|(2054,5.2122) | (.:2048,5.1983) | (.2046,5.1937) | (.2045,5.1914) | (.2045,5.1900)
E.T. | (.4550,5.7189) | (.4538,5.7036) | (.4534,5.6986) | (.4532,5.6960) | (.4531,5.6945)

20 |MP.|(20355.1530) | (:2030,5.1393) | (.2028,5.1348) | (.2027,5.1324) | (.2027,5.1311)
E.T. {(.4502,5.6528) | (.4490,5.6377) | (.4486,5.6327) | (.4484,5.6302) | (.4483,5.6286)

25 | M-P.|(:2018,5.0958) | (.2012,5.0823) | (.2010,5.0777) | (.2019,5.0755) | (.2009,5.0741)
E.T. | (.4455,5.5889) | (.4443,5.5740) | (.4439,5.5691) | (.4437,5.5665) | (.4436,5.5650)

1G(1,2) : Inverse gamma prior
E.B : Empirical Bayesian bound

E.T : Equal-tail prediction bound
M.P : Most plausible prediction
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