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Abstract 
This study proposes a Bayesian stochastic frontier model that is well-suited to productivity/efficiency 

analysis particularly using panel data. A unique feature of our proposal is that both production frontier and 
efficiency are estimable for each individual firm and their linkage to various firm characteristics enriches our 
understanding of the source of productivity/efficiency. Empirical application of the proposed analysis to 
Human Capital Corporate Panel data enables identification and quantification of the effects of Human 
Resource factors on firm efficiency in tandem with those of firm types on production frontier. A comprehensive 
description of the Markov Chain Monte Carlo estimation procedure is forwarded to facilitate the use of our 
proposed stochastic frontier analysis. 
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1. Introduction 
 

The fact that human resources (HR) play a role as a firm's valuable intangible assets has been widely 
recognized. Beyond a traditional perception of HR as costs to be minimized, a commonly agreed view is that 
HR serves as a source of value creation via efficiency enhancement and/or revenue growth [1-3]. A more 
extended view of HR as a strategic lever postulates that HR have economically significant impacts on 
organizational performance, which in turn can be translated into sustainable competitive advantage [4-6]. 

 
Despite this concensual prominence of HR, empirical validation and subsequent quantification of its 

economic effects have been rather limited in the academic literature. Empirical work in this vein, if conducted 
anyway, has often been far-fetched from modeling rigor. In addition, the resulting outcomes in many cases are 
not rich enough to properly measure the size of the effects of HR on organizational performance. 

 
A major hindrance is that researchers have very limited access to HR data of a good quality. First, HR data 

often contain highly sensitive private information and, therefore, is not publicly available. The HR information 
observable directly by an outsider has rather small informational value. The HR information hand-collected 
through survey (by an individual researcher) does not assure information quality either. The generic 
shortcomings of survey such as high non-response rates and inaccuracy of responses, due to the very nature of 
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HR information, would be more profound. Second, the nature of empirical work necessitates consolidation of 
data from multiple sources. For instance, productivity/efficiency analysis requires a measure for production 
output and inputs, which comes conventionally from finance, accounting or marketing data. Seamless data 
consolidation, though not impossible, is a daunting task and often goes beyond an individual researcher's 
capacity. Last but not least, tracking a firm's HR information during a sufficiently long time span is very costly. 
Despite the importance of panel HR data, its construction is time and effort consuming. In addition, consistency 
in many aspects of data collection, unless properly maintained over time, raises data quality issues. 

 
Human Capital Corporate Panel (HCCP) data that has been collected and maintained by Korean Research 

Institute for Vocational Education and Training (KRIVET) opens a new avenue for empirical HR research. 
The aforementioned challenges are resolved, or at minimum alleviated, in the HCCP data. This unique panel 
data set contains very detailed HR information about major Korean firms through a total of seven survey waves 
up to 2018. The fact that the surveys have been conducted by KRIVET, a government-funded independent 
research institute, assures the data quality issues substantially. KRIVET's endeavor to well organize the data 
structure makes it easier to consolidate the HCCP data with other secondary data sources. 

 
Given the availability of the HCCP data, the main objective of this study is to conduct an empirical research 

that sufficiently utilizes the valuable HR information therein. Specifically, this study proposes a flexible model 
that accommodates both cross-sectional and time-series variation in the HCCP data and, consequently, yields 
outcomes rich enough to deepen our understanding of the role various HR factors play in influencing 
organizational performance. To this end, we narrow our focus down to the context of productivity/efficiency 
analysis. Using a stochastic frontier model as a platform model, we postulate that the level of firm efficiency 
is moderated by various HR factors and estimate such a model via the use of a popular Bayesian inference 
method - Markov Chain Monte Carlo (MCMC) sampling. 

 
The remainder of the paper is organized as follows. In the next section, we begin with specifying the 

Bayesian stochastic frontier model. We then present complete details of its estimation procedure. In section 3, 
we describe the data used in the empirical application of this study. In so doing, we provide a list of the 
variables chosen and their descriptive statistics. In section 4, we report our estimation results and discuss the 
empirical findings and their managerial implications. Lastly, we offer concluding remarks. 

 

2. Model Specification and Estimation 
 

This section lays out our modeling details. We begin with illustrating the model specification for our 
stochastic frontier analysis (SFA), with an emphasis on how to model the production frontier function and 
inefficiency, two essential ingredients of SFA. We then brief the hierarchical structure embedded via across-
firm heterogeneity distribution of both constructs. Lastly, we forward the details of our MCMC sampling 
procedure that facilitates Bayesian estimation of the resulting model. 
 
2.1 Production Function Specification 
 

Since the seminal papers of Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977) 
[7,8], SFA has been commonly used in the empirical study of firm productivity and efficiency (see Bauer 
(1990) for a survey of SFA [9]). The SFA originally for cross-sectional data has been extended later for panel 
data by Battese and Coelli (1992, 1995) and Bayesian inference for SFA has been introduced by van den 
Broeck, Koop, Osiewalski and Steel (1994) and Koop, Osiewalski and Steel (1994, 1997) [10-14]. This study 
draws upon the literature of Bayesian SFA for panel data. 

The ideas underlying SFA center upon an economic theory of production where a maximum attainable 
output of firm  ( = 1, ⋯ , ) at time  ( = 1, ⋯ , ),  , depends on a combination of K inputs,  = ,, ⋯ ,  ,. Each firm has access to its own best-practice technology for transforming inputs into output. 
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This technology is assumed to follow a Cobb-Douglas form with a vector of unknown parameters,  =,, ⋯ , ,, as given by 
  = ∏  ,,,⋯,   ( ), (1) 

 
Where   is a random error drawn from a Normal distribution with mean 0 and variance . Inclusion of the 
random error   is intended to capture measurement or specification error, making the production frontier 
stochastic. The actual output   then is a function of the frontier output   and firm-specific inefficiency  as follows.  =   (−), (2) 

 

Where   is positive (i.e.,  > 0). This positivity restriction implies 0 <  (−) < 1  and therefore  <  . Taking natural logarithms for both sides of equation (2) after plugging equations (1) into (2) leads to 
 ln( ) = ∑ , ln , +,⋯,  − . (3) 

 
The key empirical task is to estimate, with the panel data of output and inputs { ,  }∀ ,, the model 

parameters of three kinds: (i) firm-specific frontier parameters   whose   element is interpreted as 
elasticity of frontier output with respect to the   input (since , =   ( )   , ), (ii) firm-specific 

inefficiency , and (iii) stochastic error variance . 
 

2.2 Hierarchical Structure 
 

Completion of our model setup requires specifying a form of across-firm heterogeneity for two firm-specific 
parameters,  and . To this end, we keep up with a standard practice in the hierarchical Bayesian modeling 
literature (see Allenby and Rossi (2006) for reference [15]). We start with assuming  to be drawn from the 
following multivariate Normal distribution: 
 ~ ( , ), (4) 

 
where  is a vector containing an intercept and firm ’s  characteristic variables;  is a ( + 1) ×  
matrix in which its (l,k) element measures contribution of the  characteristic to the average elasticity of the  input's production frontier; and  is a  ×  unrestricted covariance matrix of . The linkage of   
to  through  allows us to better understand who are more productive with respect to the level of a certain 
input and, hence, profile firms in terms of their productivity. 
 

We now turn to imposing a hierarchical structure to . To reserve its positivity constraint, we assume  
to be drawn from a log Normal distribution whose mean is a function of firm 's characteristic vector as follows: 
 ln() ~( , ), (5) 
 
where  is a vector containing an intercept and firm ’s  characteristic variables (different from those 
contained in );   is a response vector of the mean of  to these firm characteristics ; and  is the 
variance of  across firms. The linkage of  to  through  , similar to the previous one of  to  
through , enables us to shed light on how various firm characteristics affect individual firm's production 
inefficiency. 
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Lastly, we make distributional assumptions for the stochastic error variance   and the second-stage 
parameters such as , ,  , and . Following the standard practice, we assume the conjugate priors for 
all of them, as given by: ~ ( , ), ~ ( , ), ~ ( , ), ~ ( , ), 
and ~ ( , ) , where   and   stand for inverted Wishart and Gamma distributions, 
respectively. The hyperparameters, ,  ,  ,  ,  ,  ,  ,  ,  , , are appropriately chosen to make 
these priors sufficiently diffuse. Hence, they are not subject to estimation. 
 

2.3 MCMC Estimation 
 

Bayesian inference centers on posterior distribution that contains all relevant information about the model 
parameters. Analytical derivation of posterior distribution, however, is nontrivial or impossible in many cases, 
since the target posterior distribution is highly multi-dimensional and, often, of an intractable form. A major 
breakthrough in Bayesian inference is introduction of MCMC simulation [16]. This numerical method 
substitutes sequential samplings from a chain of full conditionals for a direct sampling from the target posterior. 
For the estimation of our SFA, we use an MCMC simulatior that consists of a series of Gibbs samplers and a 
Metropolis-Hastings (M-H) sampler (see Gelfand (2000) and Chib and Greenberg (1995) for further details of 
Gibbs and M-H samplings, respectively [17,18]). With that said, all the full conditionals but one, from which 
an updated value of the model parameters is drawn, are of a known form and, therefore, simulation is fairly 
straightforward to conduct via Gibbs sampling. For an exceptional case (i.e., sampling of in Step 4 below), 
the corresponding full conditional distribution is easy to evaluate up to its proportionality, facilitating the use 
of M-H sampling. Specifically, our MCMC sampler cycles through the following 7 steps after a proper 
initialization of the model parameters ,  ,  ,  ,  , , . 
 
Step 1: Update , for each firm  ( = 1, ⋯ , ), with a draw from  (, ) where  M = () + ∑ ( )( )  

 and V = M () + ∑ ( )( )  .  

 
Step 2: First vectorize  and denote its vectorized version by  (). Then update  () with a draw 

from  (, ) where M = () + (∑ ()′()) ⊗  
and V = M () +(∑ (()′ ⊗  ) ().  

Note that the ⊗ notation indicates a tensor product. 
Step 3: Update  with a draw from  (, ) where S =  + ∑ ( − )′( − )  and  =  + . 
 
Step 4: Update , for each firm  ( = 1, ⋯ , ), using an M-H algorithm. The full conditional distribution of  is proportional to ∑ ∑ exp(− (  ) )  exp(−  () ).  

We generate a proposal value   using a symmetric random walk M-H process and then replace the 
old value   probabilistically. The acceptance probability of   is min(1, |  |  ) where [ | ] and  |  denote the value of the aforementioned full conditional distribution 
evaluated at   and  , respectively. 

Step 5: Update   with a draw from MV(, ) where M = () + ∑ ()()  
 and V =M () + ∑ ()  ()  . 
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Step 6: Update  with a draw from  (, ) where  = ∑ ( ())   and s =  + . 
 

Step 7: Update  with a draw from  (, ) where  = ∑ ∑ (  )   and s =  +∑  . 
 

We run the above sampling cycle a total of 75,000 iterations. The statistical inference of this study is based 
on 50,000 MCMC draws of ,  ,  ,  ,  , ,  after 25,000 burn-in iterations. 
 

3. Data Description 
 

We have thus far laid out the model specification of our SFA in the general production context and its 
MCMC estimation procedure. In this section we start with providing a general description of the firm-level 
panel data used in this study. We then forward a list of variables selected for implementation of our SFA. 
 
3.1 HCCP Balanced Panel Data 
 

The firm-level panel data used in this study is Human Capital Corporate Panel (HCCP) data that has been 
collected by KRIVET. Since 2005, KRIVET has conducted surveys every other year, resulting a total of seven 
survey waves. The data set contains various firm-level details regarding Human Resource 
Development/Management (HRD/HRM) on top of general management information. In addition, KRIVET 
constructs a secondary data set that consists of various types of financial/accounting information for the firms 
surveyed. This secondary data set spans 18 years from 2000 to 2017 and its entries are recorded on an annual 
basis. 

 
For our empirical analysis, we use both the primary HR survey and secondary finance/accounting data. 

Regarding the former survey data, KRIVET further constructs a balanced panel data set that contains only the 
firms and survey questions commonly included from the third wave and onward (the recent five waves from 
2009 to 2017). This balanced nature of data is essential to implementing panel data analysis of any form, since 
proper modeling treatment of various “drop-outs” in panel survey data is nontrivial. We therefore use the 
balanced panel survey data and supplement it with financial/accounting information from the secondary data. 
Mismatches between the two data sets are resolved in favor of the survey data. Having said that, we extract 
financial/accounting information not only for the firms surveyed but for the years when surveys were 
conducted. This results in a total of 317 firms, each of which has five data points. Out of these 317 firms, we 
further exclude those who have blank observations in the key variables (to be detailed below). Finally, we 
include 288 firms into our SFA. 
 
3.2 Description of Variables 
 

The data required to estimate our stochastic frontier model are denoted previously by { ,  }∀ ,  and  , ∀ . The former set corresponds to the output and input variables, while the latter represents firm-
specific characteristics. We here forward a list of variables constituting both data sets. 

 
Both the output and input variables come from the secondary finance/accounting data. In accordance with 

the conventional productivity analyses, we select Sales for the output variable and postulate that Labor and 
Capital are two major inputs. We then operationalize the two input variables by choosing a reasonable proxy 
for each of them as follows: (i) a total amount of labor costs for Labor and (ii) a total amount of assets for 
Capital. The main equation in (iii) is now expressed as 
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 ln(  ) = , ln(  ) + , ln(  ) +  − . (6) 
 

Table 1 provides the statistics such as mean, standard deviation, and median for the output and input 
variables. These statistics are computed not only across physicians but over time. The statistics in the top half 
are computed across physicians after first being averaged over time. The mean therein depicts an “average” 
firm's typical production performance, which is characterized by a production of 64.41 billion sales with the 
use of 3.10 billion labor and 265.45 billion capital. Most notable are substantially large standard deviations. 
They are 3 to 6 times larger than their corresponding means, indicating a significant amount of across-firm 
heterogeneity in both the output and input variables. The fact that the medians are far less than the means 
suggests the distributions of these variables across firms are right-skewed. 

 
On the other hand, the statistics in the bottom half, computed over time after first being averaged across 

physicians, show a different facet of data. Although the change of computation order leaves the means 
unchanged, the standard deviations are fairly smaller than the previous ones, and the medians now are very 
close to the means. These findings altogether signify that most variation in data resides in the cross-sectional 
dimension, not in the time-series dimension. Consequently derived is a strong impetus for a disaggregate 
analysis, like our SFA, that fully accounts for the firm-level heterogeneity through both observed 
characteristics and unobserved random components. 
 

Table 1. Descriptive statistics for output and input variables (Unit: Korean billion won) 

Classification Statistics Sales Labor Capital 

Across firms 
 
 

Mean 64.41 3.10 265.45 

SD 202.24 15.39 2,048.71 

Median 16.04 0.59 18.68 

Over time 
 
 

Mean 64.41 3.10 265.45 

SD 3.13 0.33 41.04 

Median 63.59 3.03 260.00 
 

The firm-specific characteristics utilized in our SFA can be classified into two categories. The first category 
pertains to particular types of the firms in the sample. We include a total of six variables in this vein, all of 
which are categorical variables: (i) Industry (whether a firm belongs to manufacturing, financial service, or 
non-financial service industry), (ii) Size (whether the number of employees is less than 300, between 300 and 
999, between 1,000 and 1,999, or more than 2,000), (iii) Age (whether the age of a firm is less than 20 years, 
between 20 and 39 years, or more than 40 years), (iv) Foreign Investment (whether foreigners invest a firm) 
and (v) Governance (whether a firm is run fully by an owner, fully by a professional manager, or neither). 

 
Figure 1 presents the shares of these categorical variables. The most typical firm in our sample is a 

manufacturing company (75.35%) with less than 300 employees (45.83%), 20 to 39 years old (43.40%), 
without foreign investment (66.32%), and run fully by an owner (42.01%). This case serves as a baseline in 
the course of estimation so that its impact on the production frontier is captured by an intercept in , The 
other cases are represented by a series of dummies in  , each of which measures their incremental or 
decremental impact relative to the baseline case. 
 



298                                 International Journal of Advanced Culture Technology Vol.6 No.4 292-302 (2018) 
 

 

Figure 1. Shares of firm type variables 

The second category is related to various HR features of the firms in the sample, which are further classified 
into three sub-categories: HR Composition (HRC), HR Development (HRD), and HR Management (HRM). 
For the HRC sub-category, we select three ratio variables: (i) Full-time (% of full-time employees), (ii) Senior 
(% of employees who are older than 40), and (iii) Graduate Education (% of employees with a master/doctoral 
degree). Included into the second HRD sub-category are two dummy and one continuous 7 variables: (i) HRD 
Department (whether a firm has a HRD specialized department), (ii) HRD Planning (whether a firm sets up 
HRD planning), and (iii) HRD Expenses (a natural logarithm of HRD expenses). Similar to the HRD sub-
category, the HRM sub-category embraces two dummy and one continuous variables: (i) HRM Department 
(whether a firm has a HRM specialized department), (ii) HRM Planning (whether a firm sets up HRM 
planning), and (iii) Employee Benefits (a natural logarithm of a total amount of employee benefits). 

 
Figure 2 provides general descriptions of these HR factors included in our analysis. A typical HR 

composition is that 93.68% of their employees are full-time, 39.19% are seniors (i.e., 40 or older), and 5.16% 
are those who have graduate education (i.e., master/doctoral degree holders). Out of the 288 firms sampled, 
exactly half (50.00%) have HRD department and 66.32% have HRM department. Cross-tabulation reveals that 
132 firms (45.83%) have both, 85 firms (29.51%) have none, and the remaining 71 (24.65%) have either one. 
Regarding the HR planning, 79.51% and 79.17% of the firms set up development and management planning, 
respectively. Cross-tabulation discloses that 200 firms (69.44%) do both, 31 firms (10.76%) do none, and the 
remaining 57 (19.79%) do either one. The firms, on average, spend about 0.5 and 7.4 billion wons for HR 
development and employee benefits, respectively. 

 

Figure 2. Description of HR factors 



The Effects of Human Resource Factors on Firm Efficiency: A Bayesian Stochastic Frontier Analysis                299 
 

4. Results and Discussions 
 

The model estimated in this study is a stochastic frontier model with a two-stage hierarchy. The first stage 
parameters are all individual firm specific ( and  for  = 1, ⋯ , ) except for the stochastic error variance 
(), while the second stage parameters (, ,   and ) provide an aggregate view of the first stage ones 
through their mean and covariance. Among them, , , , and   are parameters of primary interest. In 
this section we report our estimation results and discuss the implied empirical findings. 
 
4.1 First-Stage Parameter Estimates 
 

The primary merit of our SFA is that the production frontier and inefficiency parameters are estimated at 
the firm level. In our empirical application, we estimate, for each firm, (i) labor elasticity of sales (,), (ii) 
capital elasticity of sales (,), and (iii) inefficiency measured in log sales scale (). 

Figure 3 presents their pairwise scatterplots along with marginal histograms. Regarding the two elasticity 
measures, their means across firms are 0.514 and 0.966, respectively. This indicates that, for an “average” firm, 
the percent change of production frontier is affected by that of capital approximately twice more than by that 
of labor. The standard deviations (0.448 and 0.382) show that a substantial amount of heterogeneity resides in 
these elasticity measures and labor elasticity is slightly more heterogeneous than capital one. The correlation 
between labor and capital elasticities is very strongly negative (-0.995), indicating that the two inputs are 
substitutes, rather than complements, to achieve the maximum production. 

 
On the other hand, the mean and standard deviation of the inefficiency parameter are 0.487 and 0.132, 

respectively. Since the value of this parameter is measured in a log scale, we convert it into the original ratio 
scale by exponentiating its negative (i.e.,  (−δ)). We then recalculate its mean, which turn out to be 0.615. 
This value times 100 now can be interpreted as the percentage of actual production relative to the frontier one. 
Thus, an “average” firm in the sample produces 61.47% of its attainable maximum, so the resulting inefficiency 
is 38.53%. This suggests there is a potentially large room for productivity improvement for most firms in the 
sample. A closer look at the distribution of inefficiency across firms reveals that the inefficiency for the best 
firm is only 4.88%, whereas that for the worst firm is as large as 73.82%. 
 

 

Figure 3. First-stage estimates 
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4.2 Second-Stage Parameter Estimates 

Table 2 presents the estimates of the second-stage production frontier parameters. These second-stage 
estimates help determine if there are identifiable firm types that covary with the firm-level input elasticities. 
There are an intercept and ten dummies. The intercept represents the baseline firm type described previously, 
that is, a manufacturing company with less than 300 employees, 20 to 39 years old, without foreign investment, 
and run fully by an owner. Our estimation results reveal that input elasticities of this baseline firm are 0.38 for 
labor and 1.11 for capital. Relative to the “average” firm, the baseline firm has a smaller labor elasticity and a 
larger capital one. 
The coefficient of each dummy variable measures its differential impact on the input elasticities relative to the 
baseline firm type. Four firm type variables are identified as being related significantly (at the 90% level) to 
both the labor and capital elasticities, namely, (i) Industry = Financial Service, (ii) Size = Between 300 and 
999, (iii) Age = 40 or more, and (iv) Governance = Professional manager. Except for the size dummy, the 
remaining three dummies have an incremental impact on labor elasticity and a decremental impact on capital 
elasticity. Accordingly, a financial service company with less than 300 employees, 40 or more years old, with 
or without foreign investment, and run fully by a professional manager has the highest labor elasticity, which 
is equal to 1.580 (= 0.382 + 0.743 + 0.227 + 0.228) under an assumption that all insignificant coefficients are 
zero. Likewise, the firm type with the highest capital elasticity (1.293 = 1.112 + 0.181) is the baseline one but 
with 300 to 999 workers employed. 
 

Table 2. Estimates of second-stage production frontier parameters 
  Labor elasticity () Capital elasticity () 

Variable Parameter Mean 90% HPDa) Mean 90% HPD 
 Interceptb) 0.382 [0.201, 0.562] 1.112 [0.962, 1.263] 

Industry 
 

Financial service 0.743 [0.320, 1.168] -0.689 [-1.038, -0.338] 
Non-financial service 0.116 [-0.104, 0.335] -0.109 [-0.292, 0.074] 

Size 300-999 -0.236 [-0.432, -0.041] 0.181 [0.021, 0.343] 
1,000-1,999 -0.119 [-0.436, 0.194] 0.076 [-0.184, 0.339] 

2,000 and more -0.113 [-0.458, 0.232] 0.042 [-0.248, 0.329] 
Age Less than 20 0.085 [-0.159, 0.326] -0.078 [-0.278, 0.124] 

40 or more 0.227 [0.027, 0.427] -0.208 [-0.373, -0.042] 
Foreign Investment Yes -0.030 [-0.225, 0.165] 0.005 [-0.157, 0.165] 

Governance Neither 0.151 [-0.050, 0.354] -0.135 [-0.302, 0.031] 
Professional manager 0.228 [0.080, 0.398] -0.191 [-0.329, -0.066] 

a) HPD stands for High Posterior Density interval. 
b) Intercept captures the effects of the following baseline case: Industry = Manufacturing; Size = Less than 300; Age = 

Between 20 and 39; Foreign Investment = No; and Governance = Run fully by an owner. 
 

Table 3 forwards the estimates of the second-stage inefficiency parameters. These estimates shed light on 
understanding what HR factors are associated with firm efficiency and, if any, quantifying the effects of the 
HR factors identified. Our results suggest that all the HR factors have a negative sign so that they may play a 
role in reducing inefficiency (or enhancing efficiency). Not all of them, however, have statistically significant 
effects. For the HR composition category, only significant is the percentage of full-time employees. For the 
other HRD and HRM categories, the department variables are only significant for HRM; the planning variables 
for both HRD and HRM are not significant; and HRD expenses and employee benefits turn out to be both 
significant. A related issue to the last finding is: given both expenses are efficiency enhancing, which would 
yield higher bang for the buck? The answer from our analysis is HRD expenses, simply because such a variable 
has a coefficient approximately twice larger than that of employee benefits. 
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Table 3. Estimates of second-stage inefficiency parameters 
  Inefficiency () 

Variable Parameters Mean 90% HPDa) 
 Intercept 0.5618 [0.2696, 0.8383] 

HR Composition Full-time -0.0548 [-0.0297, -0.0821] 
 Senior -0.0354 [-0.2311, 0.1371] 
 Graduate education -0.0264 [-0.5635, 0.4321] 

HR Development Department -0.0151 [-0.0953, 0.0663] 
 Planning -0.0217 [-0.0872, 0.0474] 
 Expenses -0.0017 [-0.0025, -0.0011] 

HR Management Department -0.0464 [-0.0806, -0.0638] 
 Planning -0.0036 [-0.0671, 0.0676] 
 Employee benefits -0.0009 [-0.0014, -0.0003] 

a) HPD stands for High Posterior Density interval. 

 

5. Conclusion 
 

This study proposes a Bayesian stochastic frontier model that allows for estimation of firm-level 
productivity and efficiency measures and establishment of their linkage to a diverse set of firm characteristics 
including firm types and HR factors. The resulting rich set of estimates enable us not only to draw detailed 
micro-level inferences but to identify and quantify the effects of various firm characteristics on organizational 
performance. We provide complete estimation details of our proposal for the readers who are interested in 
applying it to other managerial contexts. We hope that this study will spur further interest in modeling of this 
kind. 

 
Before concluding, we acknowledge that the presence of HCCP data is indispensable to conducting the 

empirical application of our proposal. The well-organized, multi-sourced, and detailed information contained 
therein provides an almost ideal playground to estimate our proposed model. At the same time, we also 
acknowledge that we use only a tiny piece of the HCCP data for this study. We leave a more thorough 
exploration of the HCCP data for a future research. 
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