• Title/Summary/Keyword: Bayesian Method

Search Result 1,139, Processing Time 0.036 seconds

Identification of Uncertainty in Fitting Rating Curve with Bayesian Regression (베이지안 회귀분석을 이용한 수위-유량 관계곡선의 불확실성 분석)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.943-958
    • /
    • 2008
  • This study employs Bayesian regression analysis for fitting discharge rating curves. The parameter estimates using the Bayesian regression analysis were compared to ordinary least square method using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian regression are not significantly different. However, the difference between upper and lower limits are remarkably reduced with the Bayesian regression. Therefore, from the point of view of uncertainty analysis, the Bayesian regression is more attractive than the conventional method based on a t-distribution because the data size at the site of interest is typically insufficient to estimate the parameters in rating curve. The merits and demerits of the two types of estimation methods are analyzed through the statistical simulation considering heteroscedasticity. The validation of the Bayesian regression is also performed using real stage-discharge data which were observed at 5 gauges on the Anyangcheon basin. Because the true parameters at 5 gauges are unknown, the quantitative accuracy of the Bayesian regression can not be assessed. However, it can be suggested that the uncertainty in rating curves at 5 gauges be reduced by Bayesian regression.

Comparison of Bayesian Methods for Estimating Parameters and Uncertainties of Probability Rainfall Distribution (확률강우분포의 매개변수 및 불확실성 추정을 위한 베이지안 기법의 비교)

  • Seo, Youngmin;Park, Jaeho;Choi, Yunyoung
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.19-35
    • /
    • 2019
  • This study investigates the performance of four Bayesian methods, Random Walk Metropolis (RWM), Hit-And-Run Metropolis (HARM), Adaptive Mixture Metropolis (AMM), and Population Monte Carlo (PMC), for estimating the parameters and uncertainties of probability rainfall distribution, and the results are compared with those of conventional parameter estimation methods; namely, the Method Of Moment (MOM), Maximum Likelihood Method (MLM), and Probability Weighted Method (PWM). As a result, Bayesian methods yield similar or slightly better results in parameter estimations compared with conventional methods. In particular, PMC can reduce parameter uncertainty greatly compared with RWM, HARM, and AMM methods although the Bayesian methods produce similar results in parameter estimations. Overall, the Bayesian methods produce better accuracy for scale parameters compared with the conventional methods and this characteristic improves the accuracy of probability rainfall. Therefore, Bayesian methods can be effective tools for estimating the parameters and uncertainties of probability rainfall distribution in hydrological practices, flood risk assessment, and decision-making support.

Development of Performance Based Mix Design Method Using Single Parameter Bayesian Method (단일변수 Bayesian 방법을 이용한 성능중심형 배합설계법의 개발)

  • Kim, Jang-Ho Jay;Phan, Hung-Duc;Oh, Il-Sun;Lee, Keun-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.499-510
    • /
    • 2010
  • This paper presents a systematic approach for estimating material performance and designing mix proportion of concrete based on an application of Bayesian method in the form of satisfaction curves. The one-parameter satisfaction curve represents a satisfaction probability of a concrete performance criterion as a function of concrete material parameter. An analysis method to combine multiple satisfaction curves to form one unique satisfaction curve that can relate the performance of concrete to a single evaluating value called Goodness value is proposed. A proposed PBMD procedure and examples of application of the PBMD method for concrete mix proportion design are carried out to verify the validity of the proposed method. Finally, the comparison between the expected performance results of a concrete mix proportion designed using PBMD to the ACI estimation equation calculated results are performed to check the applicability of the method to actual construction.

An Improved Joint Bayesian Method using Mirror Image's Features (미러영상 특징을 이용한 Joint Bayesian 개선 방법론)

  • Han, Sunghyu;Ahn, Jung-Ho
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.671-680
    • /
    • 2015
  • The Joint Bayesian[1] method was published in 2012. Since then, it has been used for binary classification in almost all state-of-the-art face recognition methods. However, no improved methods have been published so far except 2D-JB[2]. In this paper we propose an improved version of the JB method that considers the features of both the given face image and its mirror image. In pattern classification, it is very likely to make a mistake when the value of the decision function is close to the decision boundary or the threshold. By making the value of the decision function far from the decision boundary, the proposed method reduces the errors. The experimental results show that the proposed method outperforms the JB and 2D-JB methods by more than 1% in the challenging LFW DB. Many state-of-the-art methods required tons of training data to improve 1% in the LFW DB, but the proposed method can make it in an easy way.

Gradient Descent Approach for Value-Based Weighting (점진적 하강 방법을 이용한 속성값 기반의 가중치 계산방법)

  • Lee, Chang-Hwan;Bae, Joo-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.381-388
    • /
    • 2010
  • Naive Bayesian learning has been widely used in many data mining applications, and it performs surprisingly well on many applications. However, due to the assumption that all attributes are equally important in naive Bayesian learning, the posterior probabilities estimated by naive Bayesian are sometimes poor. In this paper, we propose more fine-grained weighting methods, called value weighting, in the context of naive Bayesian learning. While the current weighting methods assign a weight to each attribute, we assign a weight to each attribute value. We investigate how the proposed value weighting effects the performance of naive Bayesian learning. We develop new methods, using gradient descent method, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general Naive bayesian, and the value weighting method showed better in most cases.

Construction of Robust Bayesian Network Ensemble using a Speciated Evolutionary Algorithm (종 분화 진화 알고리즘을 이용한 안정된 베이지안 네트워크 앙상블 구축)

  • Yoo Ji-Oh;Kim Kyung-Joong;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1569-1580
    • /
    • 2004
  • One commonly used approach to deal with uncertainty is Bayesian network which represents joint probability distributions of domain. There are some attempts to team the structure of Bayesian networks automatically and recently many researchers design structures of Bayesian network using evolutionary algorithm. However, most of them use the only one fittest solution in the last generation. Because it is difficult to combine all the important factors into a single evaluation function, the best solution is often biased and less adaptive. In this paper, we present a method of generating diverse Bayesian network structures through fitness sharing and combining them by Bayesian method for adaptive inference. In order to evaluate performance, we conduct experiments on learning Bayesian networks with artificially generated data from ASIA and ALARM networks. According to the experiments with diverse conditions, the proposed method provides with better robustness and adaptation for handling uncertainty.

Design of Bayesian Zero-Failure Reliability Demonstration Test for Products with Weibull Lifetime Distribution (와이불 수명분포를 갖는 제품에 대한 베이지안 신뢰성 입증시험 설계)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.220-224
    • /
    • 2014
  • A Bayesian zero-failure reliability demonstration test method for products with Weibull lifetime distribution is presented. Inverted gamma prior distribution for the scale parameter of the Weibull distribution is used to design the Bayesian test plan and selecting a prior distribution using a prior test information is discussed. A test procedure with zero-failure acceptance criterion is developed that guarantee specified reliability of a product with given confidence level. An example is provided to illustrate the use of the developed Bayesian reliability demonstration test method.

Statistical Method for Implementing the Experimenter Effect in the Analysis of Gene Expression Data

  • Kim, In-Young;Rha, Sun-Young;Kim, Byung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.701-718
    • /
    • 2006
  • In cancer microarray experiments, the experimenter or patient which is nested in each experimenter often shows quite heterogeneous error variability, which should be estimated for identifying a source of variation. Our study describes a Bayesian method which utilizes clinical information for identifying a set of DE genes for the class of subtypes as well as assesses and examines the experimenter effect and patient effect which is nested in each experimenter as a source of variation. We propose a Bayesian multilevel mixed effect model based on analysis of covariance (ANACOVA). The Bayesian multilevel mixed effect model is a combination of the multilevel mixed effect model and the Bayesian hierarchical model, which provides a flexible way of defining a suitable correlation structure among genes.

Design of Bayesian Zero-Failure Reliability Demonstration Test and Its Application (베이지안 신뢰성입증시험 설계와 활용)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • A Bayesian zero-failure reliability demonstration test method for products with exponential lifetime distribution is presented. Beta prior distribution for reliability of a product is used to design the Bayesian test plan and selecting a prior distribution using a prior test information is discussed. A test procedure with zero-failure acceptance criterion is developed that guarantees specified reliability of a product with given confidence level. An example is provided to illustrate the use of the developed Bayesian reliability demonstration test method.

Two Bayesian methods for sample size determination in clinical trials

  • Kwak, Sang-Gyu;Kim, Dal-Ho;Shin, Im-Hee;Kim, Ho-Gak;Kim, Sang-Gyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1343-1351
    • /
    • 2010
  • Sample size determination is very important part in clinical trials because it influences the time and the cost of the experimental studies. In this article, we consider the Bayesian methods for sample size determination based on hypothesis testing. Specifically we compare the usual Bayesian method using Bayes factor with the decision theoretic method using Bayesian reference criterion in mean difference problem for the normal case with known variances. We illustrate two procedures numerically as well as graphically.