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Abstract

Sample size determination is very important part in clinical trials because it influ-
ences the time and the cost of the experimental studies. In this article, we consider the
Bayesian methods for sample size determination based on hypothesis testing. Specif-
ically we compare the usual Bayesian method using Bayes factor with the decision
theoretic method using Bayesian reference criterion in mean difference problem for the
normal case with known variances. We illustrate two procedures numerically as well as
graphically.

Keywords: Bayes factor, Bayesian reference criterion, clinical trial, hypothesis testing,
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1. Introduction

Sample size determination would be one of the most general tasks in clinical trials. There
are two approaches in sample size determination problem. One is the frequentist one and the
other is the Bayesian one. We can determine the sample size based on confidence interval,
hypothesis test, and many others. The frequentist approach is seeking the smallest sample
size that is sufficient to achieve a desired power at a specified significance level. The Bayesian
approach is finding the smallest sample size that is necessary to obtain a desired rate of
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correct classification of the hypothesis as true or false. The purpose of this paper is to explore
Bayesian methods in which one uses Bayes factor and the other uses Bayesian reference
criterion in hypothesis testing. We apply those methodologies to the normal case with known
variance.

George and Desu (1974), Wuet al . (1980) and Sozu et al . (2006) reviewed and investi-
gated the sample size determination problem in clinical trials. Adcock (1997), Weiss (1997),
Desu and Raghavarao (1990), Florens and Mouchart (1993) studied the sample size deter-
mination problem in either Bayesian or frequentist hypothesis testing setup. Inoue et al .
(2005) investigate the relationship between Bayesian and frequentist sample size determina-
tion.

The paper is organised as follows. In Section 2 we consider Bayesian sample size determi-
nation. In Bayesian hypothesis testing we compares the posterior probability of H0 (the null
hypothesis) and the posterior probability of H1 (the alternative hypothesis) or equivalently,
the Bayes factor. The sample size determination based on Bayes factor requires the desired
rate for correctly identifying a hypothesis as true or false. It ensures a minimum rate r∗

of correct classification. Also the decision theoretic approach to hypothesis testing using
Bayesian reference criterion is considered. We calculates the logarithmic discrepancy, the
corresponding reference posterior expectation, and decides some constant d∗ for reject the
any hypothesis. But this task needs to decide prior probability.

Two approaches to sample size determination based on Bayes factor and Bayesian reference
criterion differ in philosophy and goals. However, both provide algorithms for determining
a sample size from specified criteria and inputs. In Section 3, we utilize both approaches to
the normal case with known variance. Some discussion is given in Section 4.

2. Methodologies

2.1. Sample size determination with Bayes factor

Using traditional notation, let H0 and H1 denotethe null and alternative hypothesis re-
spectively. Type I and Type II error rates are denoted by α and β respectively and zα denote
the α-quantile of the standard normal distribution, that is, Φ(zα) = P (Z ≤ zα) = α. We for-
malize the sample size determination goal by specifying a Bayesian goal function GB(n,v).
And v = (π, α, δ, σ) is the Bayesian input which needs for sample size determination. This
function must have information, mean squared prediction error, size of probability interval
and classification error.

We want to test the hypothesis H0 : θ = θ0 verse H1 : θ = θ1, where θ0 < θ1. Under
the Bayesian approach, uncertainty about θ is presented by its prior distribution. Assume
a priori that P (θ0) = 1 − P (θ1) = π. A Bayesian decision between H0 and H1 is based on
their posterior probabilities.

Suppose that the null hypothesis H0 is not rejected if the posterior probability of the
null hypothesis H0 is at least 1/(1 + K). This cutoff-point for the posterior probability is
consistent with a 0 − 1 − K loss function shown in Table 2.1 and minimizes the posterior
expected loss (Berger, 1985).
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  is True   is True Sum
: true

: false
Not Reject  0 1 1

Reject   0 

Sum  1 +1

Table 2.1 0-1-K loss function

We can obtain cutoff-point by following expression.

KP (H0|x)

P (H1|x)
≥ 1. (2.1)

Since theorem of conditional probability, we can express (2.1) in inequation difference form

P (x|H1)P (θ1)

P (x|H0)P (θ0)
≤ K (2.2)

Then we choose the Bayesian goal function to be the rate of correctly classifying a hypothesis
as true or false. The Bayesian goal function can be formally calculated as follows.

GB(n,v) = KP (H0)P (correct decision|H0)

+ P (H1)P (correct decision|H1). (2.3)

A Bayesian finds the sample size to ensure a minimum rate r∗ of correct classification.

2.2. Sample size determination with Bayesian reference criterion

To decide whether or not some data x are compatible with the null hypothesis (H0) θ = θ0,
assuming that the data have been generated from the model

px(·|θ, σ), θ ∈ Θ, σ ∈ Ω (2.4)

steps are as follows (Bernardo and Rueda, 2002):

(i) Compute the logarithmic discrepancy,

δ(θ0, θ, σ) = inf σ∈Ω

∫
px(y|θ, σ) log

px(y|θ, σ)

px(y|θ0, σ)
dy (2.5)

between the assumed model and its closest approximation under the null hypothesis (H0)
θ = θ0.

(ii) Derive the corresponding reference posterior expectation

dr(x, θ0) =

∫ ∫
δ(θ0, θ, σ)πδ(θ, σ|x)dθdσ (2.6)
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(iii) For some d∗, reject the hypothesis θ = θ0, if and only if, dr(x, θ0) > d∗, where values
such as d∗ = 2.5 (mild evidence against θ0) or d∗ = 5 (significant evidence against θ0) may
conveniently be chosen for scientific communication.

The choice of d∗ is formally determined by the utility gain which may be expected by
using the null model when it is true. The larger that gain, the larger d∗. The analysis above
suggests that dr(x, θ0) close to 1 may be expected if H0 is true, and that dr-values over 5
should typically be regarded as significant evidence against the suitability of using H0 as a
proxy to H1.

If x = {x1, · · · , xn} is a sufficiently large random sample from a regular model p(x|θ, σ),
the posterior distribution of (θ, σ) will concentrate on their maximum likelihood estimates

(θ̂, σ̂), and thus the expected posterior discrepancy dr(x, θ0) will be close to δ(θ0, θ̂, σ̂), the

logarithmic discrepancy between the model identified by (θ̂,σ̂) and its closest approximation
under the null hypothesis.

Moreover, if x = {x1, · · · , xn} is random sample from a model px(x|θ), where θ is one-
dimensional and there no nuisance parameters, then δ(θ0, θ) will typically be a piecewise
invertible function of θ and hence the relevant reference prior will simple be Jeffrey’s prior,
that is πδ(θ) ∝ i(θ)1/2, where i(θ) is Fisher’s information function. Thus, in terms of the

natural parameterization, defined as φ = φ(θ) =
∫ θ
i(θ)1/2dθ, the reference prior πδ(θ) will

be uniform. For large sample sizes, the corresponding reference posterior distribution of
φ will then be approximately normal πδ(φ|x) ≈ N(φ|φ̂, 1/

√
n), and will only depend on

the data through its mle φ̂. Moreover, the sampling distribution of φ̂, p(φ̂, φ) will also be

approximately normal, p(φ̂|φ) ≈ N(φ|φ̂, 1/
√
n). Since the discrepancy function is invariant

under one-to-one reparametrization, and hence δ(φ0, φ) = δ(θ0, θ) one obtains, after some
algebra,

dr(x, θ0) ≈
1

2
[1 + z2(θ̂, θ0)], (2.7)

where z(θ̂, θ0) =
√
n[φ(θ̂)− φ(θ)].

This type of approximation may be extended to multivariate situation, with or without
nuisance parameters.

3. The normal case

We want to test the hypothesis H0 : θ = θ0 verse H1 : θ = θ1, where θ0 < θ1. The
setting is normal likelihood with known variance. Let’s apply two methods for sample size
determination to the normal case.

3.1. Sample size using Bayes factor

Suppose that x1, · · · , xn ∼ N(θ, σ2), σ is known and it desired to test the hypothesis
H0 : θ = θ0 verse H1 : θ = θ1, where θ0 < θ1.

And suppose that the hypothesis H0 is not rejected of the posterior probabilities of the
null hypothesis is at least 1/(1 + K). And the loss function follow Table1. First, we can
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obtain the cutoff point by

P (x|H1)P (θ1)

P (x|H0)P (θ0)
≤ K (3.1)

The prior probability is P (θ0) = π, P (θ1) = 1−π respectively, and likelihood is P (x|θ) ∼
N(θ, σ2). Then (3.1) can be rewritten as

x̄ ≤
σ2 log

(
K

π

1− π

)
n(θ1 − θ0)

+
(θ1 + θ0)

2
(3.2)

This is cut-off point for the posterior probability is consistent with a 0− 1−K loss function
shown in Table 1 and minimizes the posterior expected loss (Berger 1985). Moreover, this
cutoff point imples that the null hypothesis is not rejected if (3.4). Next, we can obtain the
Bayesian goal function can be formally calculated as

GB(n,v) = KP (H0)P (correct decision|H0)

+ P (H1)P (correct decision|H1). (3.3)

Using (3.4) GB(n,v) can be written as

GB(n,v) = KπP

Z ≤
σ log

(
K

π

1− π

)
√
nδ

+
δ
√
n

2σ



+ (1− π)P

Z ≥
σ log

(
K

π

1− π

)
√
nδ

−
δ
√
n

2σ

 , (3.4)

where Z is the standard normal, δ = θ1 − θ0.
Then, we can obtain the sample size by using the input v1 = (π, α, δ, σ). If v1 =

(0.5, 0.5, 0.1, 1) then the sample size is 857. And if v1 = (0.5, 0.5, 0.05, 1) then the sam-
ple size is 3,426. Table 3.1 and Figure 3.1 are showing the sample size with the changes of
δ, r∗ and fixed π = .5, σ = 1, α = 0.5.
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Table 3.1 The sample sizes using Bayes factor

σ
δ

0.5 0.75 1.00 1.25 1.50 1.75 2.00
r∗

1

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 1.0 0.5 0.3 0.2 0.1 0.1 0.1
0.7 4.4 2.0 1.1 0.7 0.5 0.4 0.3
0.8 11.3 5.0 2.8 1.8 1.3 0.9 0.7
0.9 26.3 11.7 6.6 4.2 2.9 2.1 1.6

3

0.5 0 0 0 0 0 0 0
0.6 9.2 4.1 2.3 1.5 1 0.8 0.6
0.7 39.6 17.6 9.9 6.3 4.4 3.2 2.5
0.8 102 45.3 25.5 16.3 11.3 8.3 6.4
0.9 236.5 105.1 59.1 37.8 26.3 19.3 14.8

5

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 25.7 11.4 6.4 4.1 2.9 2.1 1.6
0.7 110.0 48.9 27.5 17.6 12.2 9.0 6.9
0.8 283.3 125.9 70.8 45.3 31.5 23.1 17.7
0.9 657.0 292.0 164.2 105.1 73.0 53.6 41.1

 Y-axis :   , X-axis :  Y-axis :   , X-axis : 
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Figure 3.1 Graphs of sample sizes using Bayes factor

3.2. Sample size using Bayesian reference criterion

In this section we will be discuss the sample size determination using Bayesian reference
criterion. The setting is same as Section 3.1. We will calculate the sample size following the
steps given in Section 2.2. First, we can compute the logarithmic discrepancy,

δ(θ0, θ, σ) = inf

∫
N(x|θ, σ) log

N(x|θ, σ)

N(x|θ0, σ)
dx (3.5)

Since σ is known, the infimum is not available anymore.
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We know that
∫∞
−∞ x

1
√

2πσ2
exp

(
−

(x− θ)2

2σ2

)
dx = E(X) = θ, and

∫∞
−∞

1
√

2πσ2
exp

(
−

(x− θ)2

2σ2

)
dx = 1. So, (3.8) can be re-written as

δ(θ0, θ, σ) =
n

2σ2
(θ − θ0)2 =

n

2

(
θ − θ0

σ

)2

(3.6)

Next, we can derive the corresponding reference posterior expectation,

dr(x, θ0) =
n

2

∫ (
θ − θ0

σ

)2

N

(
θ|x̄,

σ2

n

)
dµ =

1

2

(
1 +

(x̄− θ0)2

σ2/n

)
. (3.7)

Therefore, dr(x, θ0) ≡ (1 + z2)/2, where z = (x̄− θ0)/(σ/
√
n).

Then we can obtain the sample size by using the input v2 = (δ∗, x̄, θ0, σ). If v2 =
(2.5, 1, 0, 1) then the sample size is 4. Table 3.2 and Figure 3.2 are showing the sample
size with the changes of d∗, x̄, and σ. Here we put θ0 = 0.

Table 3.2 The sample sizes under Bayesian reference criterion

σ
|x̄|

0.5 0.75 1.00 1.25 1.50 1.75 2.00
d∗

1

2 12.0 5.3 3.0 1.9 1.3 1.0 0.8
3 20.0 8.9 5.0 3.2 2.2 1.6 1.3
4 28.0 12.4 7.0 4.5 3.1 2.3 1.8
5 36.0 16.0 9.0 5.8 4.0 2.9 2.3
6 44.0 19.6 11.0 7.0 4.9 3.6 2.8

3

2 108.0 48.0 27.0 17.3 12.0 8.8 6.8
3 180.0 80.0 45.0 28.8 20.0 14.7 11.3
4 252.0 112.0 63.0 40.3 28.0 20.6 15.8
5 324.0 144.0 81.0 51.8 36.0 26.4 20.3
6 396.0 176.0 99.0 63.4 44.0 32.3 24.8

5

2 300.0 133.3 75.0 48.0 33.3 24.5 18.8
3 500.0 222.2 125.0 80.0 55.6 40.8 31.3
4 700.0 311.1 175.0 112.0 77.8 57.1 43.8
5 900.0 400.0 225.0 144.0 100.0 73.5 56.3
6 1100.0 488.9 275.0 176.0 122.2 89.8 68.8



1350 Sang Gyu Kwak · Dal Ho Kim · Im Hee Shin · Ho Gak Kim · Sang Gyung Kim

  Y-axis :   , X-axis :    Y-axis :   , X-axis : 

1

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6

0.5

0.75

1

1.25

1.5

1.75

2

3

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

0.5 0.75 1 1.25 1.5 1.75 2

2

3

4

5

6

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

1 2 3 4 5 6

0.5

0.75

1

1.25

1.5

1.75

2

5

0 

200 

400 

600 

800 

1000 

1200 

0.5 0.75 1 1.25 1.5 1.75 2

2

3

4

5

6

0 

200 

400 

600 

800 

1000 

1200 

1 2 3 4 5 6

0.5

0.75

1

1.25

1.5

1.75

2

Figure 3.2 Graphs of sample sizes under Bayesian reference criterion

4. Discussion

In this paper, we described two methods for the determination of sample size in clinical
trials. We also apply two approaches to the normal case with known variance. Under the
method using Bayes factor, we can look around some interesting information. First, the
sample size is in direct proportion to r∗. Second, the sample size is in inverse proportion to
δ. Under the method using Bayesian reference criterion, we can also observe some interesting
information. First, the sample size is in direct proportion to d∗. Second, the sample size is
in inverse proportion to absolute x̄. Table 4 shows that the comparison of the relations in
two methods for sample size determinations. The rate of correct classification (r∗) and the
cut-off value for reject hypothesis (d∗) are direct proportion to sample size. This mean that
if we want to determine small sample size then we must decide small r∗ and d∗. And the
difference between the null and the alternative hypothesis (δ) and the absolute x̄ (|x̄|) are
inverse proportion to sample size. This mean that if we want to determine small sample size
then we must decide big δ and |x̄|.

Table 4.1 The relation of, and r∗, d∗, σ, δ, |x̄|.
Relation Direct proportion Inverse proportion
nB r∗, σ δ
nR d∗, σ |x̄|

These methods needs so complex calculation. But Bayesian method includes more infor-
mation than frequentist one. Furthermore, we can pursue these methods for sample size
determination in normal case with unknown variance.
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