Browse > Article
http://dx.doi.org/10.5322/JESI.2019.28.1.19

Comparison of Bayesian Methods for Estimating Parameters and Uncertainties of Probability Rainfall Distribution  

Seo, Youngmin (Department of Constructional and Environmental Engineering, Kyungpook National University)
Park, Jaeho (Department of Constructional and Environmental Engineering, Kyungpook National University)
Choi, Yunyoung (Department of Constructional and Environmental Engineering, Kyungpook National University)
Publication Information
Journal of Environmental Science International / v.28, no.1, 2019 , pp. 19-35 More about this Journal
Abstract
This study investigates the performance of four Bayesian methods, Random Walk Metropolis (RWM), Hit-And-Run Metropolis (HARM), Adaptive Mixture Metropolis (AMM), and Population Monte Carlo (PMC), for estimating the parameters and uncertainties of probability rainfall distribution, and the results are compared with those of conventional parameter estimation methods; namely, the Method Of Moment (MOM), Maximum Likelihood Method (MLM), and Probability Weighted Method (PWM). As a result, Bayesian methods yield similar or slightly better results in parameter estimations compared with conventional methods. In particular, PMC can reduce parameter uncertainty greatly compared with RWM, HARM, and AMM methods although the Bayesian methods produce similar results in parameter estimations. Overall, the Bayesian methods produce better accuracy for scale parameters compared with the conventional methods and this characteristic improves the accuracy of probability rainfall. Therefore, Bayesian methods can be effective tools for estimating the parameters and uncertainties of probability rainfall distribution in hydrological practices, flood risk assessment, and decision-making support.
Keywords
Probability rainfall distribution; Parameter uncertainty; Random walk metropolis; Hit-and-run metropolis; Adaptive mixture metropolis; Population monte carlo;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Isikwue, M. O., Onoja, S. B., Naakaa, D. S., 2015, Classical and Bayesian Markov chain Monte Carlo (MCMC) modeling of extreme rainfall (1979-2014) in Makurdi, Nigeria, Int. J. Water Res. Environ. Eng., 7, 123-131.   DOI
2 Kim, S. U., Lee, K. S., 2008a, At-site low flow frequency analysis using Bayesian MCMC: I. Theoretical background and construction of prior distribution, J. Korea Water Resour. Assoc., 41, 35-47.   DOI
3 Kim, S. U., Lee, K. S., 2008b, Regional low flow frequency analysis using Bayesian multiple regression, J. Korea Water Resour. Assoc., 41, 325-340.   DOI
4 Kim, S. U., Lee, K. S., 2008c, Identification of uncertainty in fitting rating curve with Bayesian regression, J. Korea Water Resour. Assoc., 41, 943-958.   DOI
5 Kim, S. U., Lee, K. S., Park, Y. J., 2010, Analysis of uncertainty of rainfall frequency analysis including extreme rainfall events, J. Korea Water Resour. Assoc., 43, 337-351.   DOI
6 Muller, A., Bacro, J. N., Lang, M., 2008, Bayesian comparison of different rainfall depth-duration-frequency relationships, Stoch. Env. Res. Risk A., 22, 33-46.   DOI
7 Ragulina, G., Reitan, T., 2017, Generalized extreme value shape parameter and its nature for extreme precipitation using long time series and the Bayesian approach, Hydrolog. Sci. J., 62, 863-879.   DOI
8 Reis Jr., D. S., 2005, Flood frequency analysis employing Bayesian regional regression and imperfect historical information, Ph. D. Dissertation, Cornell University, New York, USA.
9 Roberts, G., Rosenthal, J., 2009, Examples of adaptive MCMC, Comput. Stat. Data Anal., 18, 349-367.
10 Seo, Y. M., 2011, Risk analysis in water resources planning: Flood risk analysis with consideration of rainfall uncertainty, Ph. D. Disseration, Yeungnam University, Gyeongsan, South Korea.
11 Seo, Y. M., Park, K. B., 2011, Uncertainty analysis for parameters of probability distribution in rainfall frequency analysis by Bayesian MCMC and Metropolis Hastings algorithm, J. Environ. Sci. Int., 20, 329-340.   DOI
12 Seo, Y. M., Park, K. B., Kim, S., 2011, Uncertainty analysis of parameters of spatial statistical model using Bayesian method for estimating spatial distribution of probability rainfall, J. Environ. Sci. Int., 20, 1541-1551.   DOI
13 Son, G. T., 2014, Introduction to computational statistics using R, Freedom Academy, Inc.
14 Alam, M. A., Farnham, C., Emura, K., 2018, Bayesian modeling of flood frequency analysis in Bangladesh using Hamiltonian Monte Carlo techniques, Water, 10, 900.   DOI
15 Cappe, O., Guillin, A., Marin, J. M., Robert, C., 2004, Population Monte Carlo, J. Comput. Graph. Stat., 13, 907-929.   DOI
16 Chen, M., Schmeiser, B., 1992, Performance of the Gibbs, hit-and-run and Metropolis samplers, J. Comput. Graph. Stat., 2, 251-272.   DOI
17 Chung, E. S., Kim, S. U., 2013, Bayesian rainfall frequency analysis with extreme value using the informative prior distribution, KSCE J. Civ. Eng., 17, 1502-1514.   DOI
18 Coles S. G., Tawn J. A., 1996, A Bayesian analysis of extreme rainfall data, J. R. Stat. Soc. C-Appl., 45, 463-478.
19 Coles, S., Pericchi, L., 2003, Anticipating catastrophes through extreme value modeling, J. R. Stat. Soc. C-Appl., 52, 405-416.   DOI
20 Dawson, C. W., Abrahart, R. J., See, L. M., 2007, HydroTest: A web-based toolbox of evaluation metrics for the standardized assessment of hydrological forecasts. Environ., Model. Softw., 22, 1034-1052.   DOI
21 Gilks, W. R., Roverts, G., 1996, Strategies for improving MCMC, in: Gilks, W. R., Richardson, S., Spiegelhalter, D. (eds.), Markov chain Monte Carlo in practice, Chapman & Hall, Boca Raton, Florida, 89-114.