Communications for Statistical Applications and Methods
/
제9권2호
/
pp.381-388
/
2002
It has been pointed out that the classical credibility model used in Korea since the beginning of 1990's lacks in objectiveness. Recently, in order to improve objectiveness, the empirical Bayes credibility model utilizing general exposure units like the number of claims and premium has been employed, but that model itself is not quite applicable in the country like Korea whose annual and classified empirical data are not well accumulated and even varied severely. In this article, we propose a new and better model, Based on the new model, we estimate both credibility and loss ratio of each class for fire insurance plans by Korean insurance companies. As a conclusion, we empirically make sure analysis that the number of claims is a more reasonable exposure unit than premium.
Communications for Statistical Applications and Methods
/
제25권4호
/
pp.355-371
/
2018
The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.
In this paper, we propose a new approach to sequential linear regression adaptation of continuous density hidden Markov models (CDHMMs) based on transformation space model (TSM). The proposed TSM which characterizes the a priori knowledge of the training speakers associated with maximum likelihood linear regression (MLLR) matrix parameters is effectively described in terms of the latent variable models. The TSM provides various sources of information such as the correlation information, the prior distribution, and the prior knowledge of the regression parameters that are very useful for rapid adaptation. The quasi-Bayes (QB) estimation algorithm is formulated to incrementally update the hyperparameters of the TSM and regression matrices simultaneously. Experimental results showed that the proposed TSM approach is better than that of the conventional quasi-Bayes linear regression (QBLR) algorithm for a small amount of adaptation data.
The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.
하나의 reader와 여러 tag로 구성된 RFID 망에서 tag의 응답 간 충돌을 중재하기 위해 tag가 응답하도록 여러 슬롯을 마련해 주는 프레임화 및 슬롯화된 ALOHA 방식이 소개되었다. 프레임화 및 슬롯화된 ALOHA에서는 tag 인식의 효율이 극대화되기 위해 프레임 별 슬롯의 수가 최적화되어야 한다. 이러한 최적화는 tag의 수를 필요로 하나 reader는 tag의 수를 알기 힘들다. 본 논문에서는 별도로 tag의 수를 추정하지 않고 슬롯의 수에 대해 직접 Bayes action을 취하는 프레임화 및 슬롯화된 ALOHA에 기초한 tag 인식 방식을 제안한다. 구체적으로 Bayes action은 tag의 수가 갖는 사전 분포, 어떤 tag도 응답하지 않은 슬롯의 수에 대한 관찰값, 그리고 인식률을 반영한 손실 함수를 결합한 결정 문제를 풀어 구한다. 또한 tag의 수가 갖는 사전 분포의 진화를 통해 각 프레임에서 이러한 Bayes action을 지원한다. 모의 실험 결과로부터 진화하는 사전 분포와 Bayes action의 쌍은 robust 방식을 이루어 tag의 수의 참값과 초기 추측값의 큰 괴리에도 불구하고 일정 수준의 인식률을 얻을 수 있음을 관찰한다. 또한 제안하는 방식은 tag의 수에 대한 고전적인 추정값을 사용하는 방식에 비해 높은 인식 완료 확률을 얻을 수 있음을 확인한다.
기하분포에 기초한 관리도는 불량품이 드물게 발생하는 고품질공정에서 불량률의 변화를 효율적으로 탐지할 수 있다고 알려져 있다. 이러한 관리도를 사용할 때 기본적인 가정은 관리상태일 때의 불량률이 알려져 있거나 또는 정확하게 추정되었다는 것이다. 그러나 고품질공정에서 불량률은 아주 작기 때문에 이를 정확하게 추정하기가 쉽지 않으며 또한 아주 큰 표본크기가 필요한 경우도 종종 발생한다. 일반적으로 제1국면에서 관리상태의 불량률을 추정할 때 최대우도추정량을 사용하지만, 이 논문에서는 베이즈추정량의 사용을 제안하였다. 베이즈추정량을 사용할 경우 실무자의 사전지식을 반영할 수 있으며 표본에 불량품이 발견되지 않을 경우 발생하는 최대우도추정량의 문제점을 해결할 수 있다는 장점이 있다. 기하 관리도와 기하누적합 관리도에서 베이즈추정량을 사용한 경우와 최대우도추정량을 사용한 경우를 비교한 결과, 표본의 크기가 크지 않은 경우 베이즈추정량을 사용하는 것의 효율이 더 좋음을 알 수 있었다.
본 논문에서는 수정된 MUSIC 도래 방향 추정 알고리즘에 대해서 연구 하였다. 수정된 MUSIC 알고리즘은 특이 값 행렬과 베이즈 방법을 적용시켜 공 분산행렬을 최적화 시키고 가중치를 갱신하여 원하는 신호를 추정하는 방법이다. 그리고 MUSCI 알고리즘의 신호 부 공간 방법을 적용시켜 원하는 신호를 정확히 추정하였다. 무상관 신호가 수신 시스템에 입사하면 기존의 MUSIC알고리즘으로 원하는 신호를 추정 할 수 있다. 그러나 일반적으로 수신 시스템에는 상관성 신호가 입사하므로 기존의 MUSIC알고리즘으로 원하는 도래 방향 신호를 추정할 수 있는 능력이 현저히 떨어진다. 모의실험을 통해서 상관성 신호인 경우에 본 연구에서 제안된 MUSIC알고리즘과 기존의 MUSIC알고리즘의 성능을 비교 분석한다.
Bayes theorem, suggested by the British Mathematician Bayes (18th century), enables the prior estimate of the probability of an event under the condition given by a specific This theorem has been frequently used to revise the failure probability of a component or system. 2-Stage Bayesian procedure was firstly published by Shultis et al. (1981) and Kaplan (1983), and was further developed based on the studies of Hora & Iman (1990) Papazpgolou et al., Porn(1993). For a small observed failure number (below 12), the estimated reliability of a system or component is not reliable. In the case in which the reliability data of the corresponding system or component can be found in a generic reliability reference book, however, a reliable estimation of the failure probability can be realized by using Bayes theorem, which jointly makes use of the observed data (specific data) and the data found in reference book (generic data).
International Journal of Reliability and Applications
/
제6권2호
/
pp.65-78
/
2005
In this paper we derive estimations of the parameters included in the distribution of the lifetime of k-out-of-m cold standby system with imperfect switches. Maximum likelihood and Bayes procedures are followed to get such estimations. Numerical studies, using Monte Carlo simulation method, are given in order to explain how we can utilize the theoretical results derived, and to compare the performance of the two different methods used. The criterion of comparisons is the mean squared errors associated with each estimate.
Communications for Statistical Applications and Methods
/
제24권3호
/
pp.193-209
/
2017
The power Lindley distribution with some of its properties is considered in this article. Maximum likelihood, least squares, maximum product spacings, and Bayes estimators are proposed to estimate all the unknown parameters of the power Lindley distribution. Lindley's approximation and Markov chain Monte Carlo techniques are utilized for Bayesian calculations since posterior distribution cannot be reduced to standard distribution. The performances of the proposed estimators are compared based on simulated samples. The waiting times of research articles to be accepted in statistical journals are fitted to the power Lindley distribution with other competing distributions. Chi-square statistic, Kolmogorov-Smirnov statistic, Akaike information criterion and Bayesian information criterion are used to access goodness-of-fit. It was found that the power Lindley distribution gives a better fit for the data than other distributions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.