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Abstract

In an RFID network consisting of a single reader and many tags, a framed and slotted ALOHA, which provides a
number of slots for the tags to respond, was introduced for arbitrating a collision among tags’ responses. In a framed and
slotted ALOHA, the number of slots in each frame should be optimized to attain the maximal efficiency in tag cognizance.
While such an optimization necessitates the knowledge about the number of tags, the reader hardly knows it. In this
paper, we propose a tag cognizance scheme based on framed and slotted ALOHA, which is characterized by directly
taking a Bayes action on the number of slots without estimating the number of tags separately. Specifically, a Bayes
action is yielded by solving a decision problem which incorporates the prior distribution the number of tags, the
observation on the number of slots in which no tag responds and the loss function reflecting the cognizance rate. Also, a
Bayes action in each frame is supported by an evolution of prior distribution for the number of tags. From the simulation
results, we observe that the pair of evolving prior distribution and Bayes action forms a robust scheme which attains a
certain level of cognizance rate in spite of a high discrepancy between the true and initially believed numbers of tags.
Also, the proposed scheme is confirmed to be able to achieve higher cognizance completion probability than a scheme
using classical estimate of the number of tags separately.
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I. Introduction identification (RFID)

system attains information

In a contactless fashion, radio frequency
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stored at an electronic tag by using a radio wave'l”

4 An RFID network consists of readers and tags,
where a reader inquires the identities of tags and a
tag responds to the reader’'s inquiry. In this paper,
we consider an RFID network consisting of a reader
and many passive tags sojourning in the vicinity of
the reader as shown in figure 1. In the RFID
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network, two or more tags may attempt to respond
at the same time, which results in a collision among
the tags’ responses. For the reader to cognize the
tags, a scheme is required to arbitrate such a
collision. A framed and slotted ALOHA is one of the
famous schemes of arbitrating a tag collision. It was
also adopted in some standards as ISO/IEC 18000-6
Type A, ISO/TEC 18000-6 Type C, ISO/IEC 18000-7
and EPC Class 1", In a framed slotted ALOHA,
time is divided into frames and a number of slots
are provided in each frame. In every frame, a tag
randomly selects a slot equally likely and attempts to
respond on the selected slot. In a framed and slotted
ALOHA, the number of slots in a frame is an
which affects the
collision probability and the efficiency of tag

important design parameter,

cognizance as well. Research efforts were made to
optimize the number of slots provided in each frame
in regard to the chosen performance measure” ",
Such an optimization usually requires the number of
tags sojourning in the neighborhood of the reader.
However, the reader hardly knows it. Thus, research
works tried to estimate the number of tags prior to

the optimizing the number of slots in each frame'>®~

gl
In this paper, we consider an RFID network which
consists of a single reader and many tags around the

reader. in such a network, we propose a tag

stte| readeret 07 tag2 FAHE RFID &
RFID network consisting of a single reader and
many tags.
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cognizance scheme based on framed and slotted
ALOHA. Previous works usually separated estimating
the number of tags and determining the number of
slots in each frame. In the proposed tag cognizance
scheme, we first construct a decision problem which
includes the prior distribution for the number of tags,
the observation on the number of slots in which no
tag responded and the loss function reflecting the
cognizance rate, (ie., the average number of tags that
the reader cognizes per unit time). Unifying the
processes of estimating the number of tags and
determining the number of slots, we then take a
Bayes action, (ie, an action which minimizes the
posterior expected loss), on the number of slots
directly. Two measures are selected for performance
evaluation; the cognizance rate and the cognizance
completion probability defined as the probability that
the reader cognizes the all tags. In each frame, the
pair of the prior distribution and Bayes action is then
compared with the pair of the classical estimate and
the number of slots determined to minimizes the
cognizance rate.

In section II, we describe the proposed tag
cognizance scheme based on framed and slotted
ALOHA. In section I, we formulate a decision
problem and find a Bayes action on the number of
slots. In section IV, we present an evolution of prior
distribution which inspirits the sequence of Bayes
is devoted to the evaluation of

in the cognizance rate and

actions. Section V
the Bayes actions
cognizance completion probability.

II. Tag Cognizance Scheme

In this section, we present a tag cognizance
scheme based on framed and slotted ALOHA.

Figure 2 shows an exemplary frame structure in
the proposed tag cognizance scheme. As shown in
figure 2, a frame is divided into a part for the inquiry
of the reader and a part for the responses of tags.
Both of the inquiry and response parts are also
divided into a number of slots. Then, the proposed
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Exemplary frame structure in the proposed tag
cognizance scheme.

scheme behaves as follows:

1) Using the inquiry part of a frame, the reader
asks the identities of tags and announces the number
of slots in the response part of the frame.

2) Then, each tag selects a slot independently and
equally likely among the slots in the response of the
frame and responds to the reader's inquiry using the
selected slot.

3) As a result, the slots in the frame are classified
in which no tag
responded, slots in which only one tag responded and

into three categories; slots
slots in which two or more tags responded
simultaneously. (For later use, let X, Y,, and Z,
denote the number of slots in which no tag responds,
the number of slots in which only one tag responds
and the number of slots in which two or more tags
responds in the nth frame, respectively.) The reader
then observes each slot and counts the number of
slots belonging to each category.

4) Using the prior distribution for the number of
tags and the observation on each slot, the reader
takes a Bayes action on the number of slots in the
response part of the next frame. Note that a Bayes
action is chosen in the action space as to minimizes
the posterior expected loss which reflects the
cognizance rate.

5) Using the observation on each slot, the reader
also updates the prior distribution for the number of
tags.

III. Bayes Action on the Number of Slots

In this section, we find a Bayes action on the

number of slots. To find such a Bayes action, we

9

first formulate a decision problem[ . The decision
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problem is a triple (#, 4, L). It consists of parameter
space ¥ = {1,2,---}, action space A = {1,2,---} and
loss function L. First, the parameter space M is the
support of the (unknown) number of tags, denoted by
M. During the nth frame for n€{1,2,---}, we a
priori believe that the number of tags has the shifted
Poisson distribution with parameter A,. Note that the

prior mass for M, denoted by g, satisfies

“Aym—1
e A

g, (m)= e Q)
for me M. Also, the prior mean of M
EM)=x,+1, 2)

Secondly, the action space A is equivalent to the set
of all feasible numbers that the number of slots in
the response part of a frame can take. Thirdly, the
value of the loss function L(m,a) indicates the loss
incurred by taking an action a when the true number
of tags is m. In this paper, we devise a loss function
as to reflect the cognizance rate, which is defined as
the average number of tags cognized per unit time.
Let u, and v, denote the number of slots consisting
of the inquiry and response parts of the nth frame,
respectively. Recall that Y, represents the number of
slots in which only one tag responds, which is
equivalent to the number of tags cognized during the
nth frame. Note that ¥, has the same distribution
as the number of boxes filled with only one ball
when M indistinguishable balls are equally likely put

[10]

into v, boxes . Thus, we have the conditional mass

for Y, for given M= m as follows:
(—1)y,!'m!

P(Y,=y| M=m)= -
ylv,

min{l/n,m}

(=1 (v, —y)" 7

= G=y)y, — il m—j) 3

x

for y={0,---,v,}. Using the mass in (3), for
example, we can obtain the conditional expectation of
Y, as
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E(Y, | M=m)=m(1— )1 4)

n

Let §n+1(m7’/n+1)
during the (n+ 1)st frame. Then, we have

€n+1(m7yn+1)

denote the cognizance rate

m 1
Bn+1T Voo

ot 5)

Vpt1

for given M= m. Reflecting the cognizance rate on
the loss function, we set the loss incurred by taking
an action a when the true number of tags is m to
be

m 1

L(m,a) =
B +1 +a

(6)

for mEM and aE A

Recall that X, represents the number of slots in
which no tag responded in the nth frame. Note that
X, has the same distribution as the number of boxes
with no ball when A indistinguishable balls are
equally likely put into v, boxes [10]. Let f, denoted
the conditional mass for X, given M= m. Then, we

have

v,! (1Y (w,—x—5)™

v, —z—=j)!

folz lm)= (N

W =%

for z€{0,-+-,v,}. Let h, denote the posterior mass
for M, ie, the conditional mass for M for given
X, =xz. Using the prior mass g, and conditional

mass f,, we obtain

h,(m | )
fulz 1 m)g, (m)

S iale 1 B, )

VAn -1
e A

(8
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for meu

The posterior expected loss is the expected loss
with respect to the posterior distribution. From the
posterior mass h,, in (8), we calculate the posterior
expected loss incurred by action a, denoted by
pn(hysa), as follows:

A Vo—
R
T Pri1ta
—i—:(l—%)
[l—e — ]un—z—l
l1-e B

n

(.Un+1+a)(1*e ")
Sl
1—6 Yn ¢ v, —x—2
x| — " ©)
1—e 7

for a= A A Bayes action is defined as an action

which minimizes the posterior expected loss. Let a.f
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Fig. 3. Exemplary frame structure in the proposed tag
cognizance scheme.
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denote a Bayes action on the number of slots in the
response part of the (n-+1)st frame. Then,

*

P (Bnsar ) < p,(Ryya) (10)

for all e A4 Unfortunately, no closed form of a
Bayes action is available. A numerical method may
be employed to obtain a Bayes action.

Figure 3
p,(h,,a) incurred by an action a. In this figure, we
set A, =120, v, =100, z=50, and p,.;=1. In

shows the posterior expected loss

figure 3, we observe that there is a Bayes action a,*
minimizing the posterior expected loss, which is
around 100.

IV. Prior Evolution

As frames go by, the reader has more experience
of observing the number of slots belonging to each
category. Such an experience enables to update the
prior distribution for the number of tags more
precisely. Recall that g, is the prior mass for the
number of tags that we believe during the nth
frame. Then, the prior evolution is defined as the
sequence {g,,n=0,1,---} of prior masses for the
number of tags. Note that g, is the mass of the
shifted Poisson distribution with parameter A,. Using
the observation on X,,, we then update g, t0 g,,41,
(e, the prior mass for the number of tags that we
believe during the (n+1)st frame), which is also
the mass of the shifted Poisson distribution. The
parameter of the mass with parameter A, ,,. We
set ¢,+: to be the mass g, ., denoted by X, 4, is
designed to satisfy the relation with the posterior
mean of the number of tags in the nth frame as
follows:

Un (11

(528)

Bayes 9 RFID Tag 214 SEE

for n€1,2,-}.

V. Performance Evaluation

In this section, we evaluate the performance of the
proposed tag cognizance scheme in cognizance rate
and cognizance completion probability by a sirmuation
method. In the evaluation, the proposed scheme is
compared with four schemes, which are characterized
by separately estimating the number of tags and then
determining the number of slots as to maximize the
short-term cognizance rate. These schemes are
identified as ideal, Quan’s, Schoute's, and Vogt's
schemes. The estimate of a scheme distinguishes it
from others. The ideal scheme assumes that the
reader knows the number of tags exactly while
others adopt classical estimates introduced in [6, 8]
and [7], respectively. The simulation environment is
as follows:

1) A simulation is repeated 500 times.

2) Each simulation persists until 2000 slots.

3) The inquiry part of each frame always consists
of a single slot.

4) In each simulation, the true number of tags
independently and identically has the shifted Poisson
distribution with parameter 99.

5) No noise interferes with the response of a tag
except the responses of other tags, if any.
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Fig. 4. Tendency of cognizance rate with respect to
time.
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Figures 4 and 5 show the tendency of the
cognizance rate as time goes by. Initially, the number
of tags is believed to be 10 in figure 4 while it is fo
be 190 in figure 5. In both of the figures, the ideal
scheme shows dominantly superior cognizance rate.
The cognizance rate of each other scheme also seems
to converge to a value, which is not significantly
lower than the value to which the cognizance rate of
the ideal scheme converges.

Figures 6 and 7 magnify an early part of figures 4
and 5, respectively. In figure 6, we observe that the
proposed scheme is able to make the cognizance rate
reach a certain high level in a relatively early time.
As stated in figure 4, the number of tags is initially
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75

0.5

04
03}

02 .

cognizance rate

o1f ]

s s

z ]
400 500

L AT
0.0 5~ 200 300

time (slots)

BT

a3 7. AlZtel SE0| ME UAES F4
Fig. 7. Tendency of cognizance rate with respect 1o
time.

zooo.oF, N

1800.0 |-

H

1600.0

1400.0

T

1200.0

time (slots)

SR

T

1000.0 -

800.0 [

600.0 Lo
0.0

el L )
0.2 04 0.8

cognizance completion probability

O 8 o™ x| oA gr #Eg 9V HE
Azt
Fig. 8. Average time to afttain a level of cognizance

completion probability.

¥z

believed fo be 10, which is highly smaller than the
true number 100. As a result, a small number of slots
are provided in the response part of the first frame
and tags’ responses collide in many slots. In such a
classical estimate often falls in
underestimating  the number tags, which
deteriorates the efficiency of tag cognizance. In figure

situation, a

of

7, we notice that the proposed scheme performs as
similarly as other schemes in cognizance rate. As
stated in figure 5, the number of tags is initially
believed to be 190, which is larger than the frue
number 100. In such a situation, a classical estimate
behaves in a relatively precise way. From these two
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figures, we confirm that the sequence of Bayes
actions forms a robust scheme which attains a
certain level of cognizance rate in spite of a high
discrepancy between the true and initially believed
numbers of tags.

Figures 8 and 9 show the average time needed to
attain a certain level of cognizance completion
probability. As in figures 4 and 5, the number of tags
is initially believed to be 10 in figure 8 while it is to
be 190 in figure 9. To attain a certain level of
cognizance completion probability, we observe that
the proposed scheme needs a shorter average timé
than other schemes. The phenomenon is partially due
to the robustness of the proposed scheme against the
discrepancy between the true and initially believed
numbers of tags.

VI. Conclusions

In an RFID network consisting of a reader and
many tags, we proposed a tag cognizance scheme
based on framed and slotted ALOHA. In a framed
slotted ALOHA, it is desirable to determine the
number of slots to enhance the efficiency of tag
cognizance, which requires the information about the
number of tags. For such a determination, the
proposed scheme distinctively takes a Bayes action

pal

1 2

[

on the number of slots directly without estimating
the number of tags separately, where a Bayes action
is found by solving a decision problem which
incorporates the evolving prior distribution for the
number of tags, the observation on the number of
slots in which no tag responded and the loss function
reflecting the cognizance rate. From the simulation
results, we observed that the proposed scheme is
robust enough to attain a certain level of cognizance
rate in spite of a high discrepancy between the true
and initially believed numbers of tags. Also, the
proposed scheme was confirmed to produce higher
cognizance completion probability than a scheme
using a classical estimate of the number of tags
separately.

References

[1] B. Glover and H. Bhatt, RFID Essentials.
O'Reilly, 2006.

[21 K. Finkenzeller, RFID Handbook-Fundamentals
and Applications in Contactless Smaart Cards
and Identification. John Wiley & Son, 2006.

[3] J. Cha and J. Kim, “ALOHA-type Anti—collision
Algorithms Using Tag Estimation Method in
RFID system,” Journal of KICS, vol. 30, no.
9A, pp. 814-821, September 2005.

[4 S. Lee, S. Joo and C. Lee, “An Enhanced
Dynamic Framed Slotted ALOHA Algorithm for
RFID Tag Identification,” Proceedings of the
nd Arnual International Conference on Mobile
and Ubiquitous Systems. Networking and
Services, 2005.

(5] J. Park, W. Shin, J. Ha, J. Jung, and C. Choi,
“Estimation of the Number of Tags for Framed
and Slotted ALOHA in RFID Networks,”
Proceedings o the I17th Joint Conference on
Communications and Information, 2007.

[6] C. Quan, H Mo, G. Choi, C. Pyo, and J. Chae,
“A Study on Anti-collision Algorithm in Gen2
Protocol Based RFID Systems,” Jowrmnal o
KICS, vol. 31, no. 6B, pp. 561-571, June 2006.

[71 H Vogt, “Efficient Object Identification with
Passive RFID  Tags,”  Proceedings of
International Conference on Peruvasive
Computing 2002, pp. 98-113, 2002.

(8] F. Schoute, “Dynamic Frame Length ALOHA,



20094 5% XMAHZEE =FX N 46 HTCEH A S = 77

IEEE Transactions on Communications, vol. 31,
no. 4, pp. 565-568, April 1983.

[9] T. Ferguson, Mathematical Statistics - A
Decision Theoretic Approach. Academic Press,
1967.

[10] W. Feller, An Introduction to Probability Theory
and Its Applications. 2nd edition, John Wiley &
Sons, 1963.

PN

g & H(EA )
2002 waTieta oty
HEEAN G A}
2009 BA @i thEhd
WA FE T EH
HPAb A whA} A
<FHAAEF: oA H2 A, F <FAAEOR : dolE EdY 2
A, 79 o8> Bl TAT 7Y o]E>

s E(A99)
20024 @S T ohel

AAHFE B} HAL

20009 37 9EYSE I
: AR FEF S

z M ALY

1986 MEoigtw FHost
AL &3 SHAL

1988 A& dighal uighel
HAL-F 8T A AL

199633 University of California
at Los Angeles
A7) F 83t whAL

A4 Gty FHUE FAFHGE ay

FHAEk oA HE Ao, £F Ao, FA

T, 7Y ol &>

AN

=]

(63D



