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Abstract

The two parameter negative exponential distribution has many practical applications in queuing theory such
as the service times of agents in system, the time it takes before your next telephone call, the time until a radioac-
tive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall
or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation prob-
lem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a
maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength
model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We
also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo
technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model
estimates. Real data is used as a practical application of the proposed model.

Keywords: maximum penalized likelihood estimator, Lindley approximation, progressive type |l
censored data, Bayes estimator, simulation, Markov chain Mote Carlo technique, two parameter
negative exponential distribution

1. Introduction

Let X be a two parameter negative exponential distribution with scale parameter A measuring the fail-
ure rate and location parameter y. Then the probability density function and cumulative distribution
function of X are

Fl ) = %exp [—Q]I(x>y), x>, p>0,1>0 (1.1)

and

Fx;u, ) = 1 —exp [—Lﬂﬂ)} I(x>p), x>u
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Figure 1: Two parameter negative exponential distribution.

where I(+) is the indicator function of (-) that is I(x > u) = 1 for all x > u. Figure 1 shows the graph of
two parameter negative exponential distribution for different values of ¢ and A, we then observe that
the two parameter negative exponential distribution is a positively skewed distribution.

The two parameter negative exponential distribution plays an important role in modeling in many
fields such as queuing theory, physics, biology, hydrology, reliability, and reliability engineering. In
this paper, we examine the problem of estimating the reliability parameter i.e., R = P[Y < X]. The
reliability parameter is referred to the stress-strength model included in quality control, engineering
statistics, and other fields. In reliability context, the stress-strength model describes the life of compo-
nent which has a random strength variable X and is subjected to random variable stress Y. The system
fails any time the stress is greater than the strength. The estimation of stress-strength model when X
and Y are random variables having a specified distribution discussed by many authors starting from
Birnbaum (1956), Basu (1964), Downtown (1973), Tong (1974, 1977), Beg (1980), Iwase (1987),
McCool (1991). Recently, Ali et al. (2012), Greco and Ventura (2011), Rezaei et al. (2010), Wong
(2012), Shahsanaei and Daneshkhah (2013), Hussian (2013), Al-Mutairi ef al. (2013), Ghitany et al.
(2015), Najarzadegan ef al. (2016). The estimator of reliability parameter when X and Y are inde-
pendent exponential random variables discussed by several authors such as Enis and Geisser (1971),
Kelley et al. (1976), Sathe and Shah (1981). The pervious work of reliability parameter when X and Y
are independent two parameter negative exponential random variables discussed by Pal et al. (2005)
derived the distribution of UMVUE of the reliability parameter; subsequently, Krishnamoorthy et al.
(2007) studied the problem of hypothesis testing and interval estimation of the reliability parameter.

In this paper, we introduce a maximum penalized likelihood estimator of a reliability param-
eter when X and Y are independent two parameter negative exponential random variables as well
as introduce the Bayes estimator of it using Lindley approximation. This paper organized as: the
stress-strength parameter when X and Y are independent two parameter negative exponential random
variables with parameters (41, ;) and (A, () respectively is determined in Section 2. We present
maximum penalized likelihood estimator of the reliability parameter and compare it by the maximum
likelihood estimator also the Bayes estimator of the reliability parameter using Lindley approximation
introduced for complete data in Section 3. We present the maximum penalized likelihood estimator
of the reliability parameter and the Bayes estimator of the reliability parameter using a Markov chain
Monte Carlo technique (MCMC) introduced for the incomplete data in Section 4. The performance
of these estimator is assessed by simulation study in Section 5. A practical application is presented in
Section 6. The conclusion of this paper introduced in Section 7.
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2. Stress-strength model

Let X and Y be independent strength and stress random variables follow two parameter negative
exponential distribution with parameters (4;, ;) and (1p, up) respectively. Then the stress-strength
model R define as

00

R=P[Y<X]= f Fy(x)f(x)dx.
min(uy,42)

For all cases of (u;, up) we obtain the formula of R as:

o If u; = uy, then

A
R= "1 @2.1)
A+ A
o If yy # uy, then
R=|1- 2 1 > ) + |~ 1 < o) 2.2)
= — e e i 5 .
A+ A L7 AL+ A e

where I(-) is the indicator function.

In the next sections, we will obtain the different estimators of R.

3. Different estimators of R for complete data

In this section, the maximum penalized likelihood estimators of parameter R are obtained and com-
pared by its regular maximum likelihood estimator for complete data and the Bayes estimator of
reliability parameter using the Lindley approximation also introduced for complete data.

3.1. Maximum penalized likelihood estimator of R

Zheng (2013) introduced the maximum penalized likelihood estimator of two parameter negative
exponential distribution parameters because the regular maximum likelihood estimator of distribution
parameters were biased. In this subsection, we use the Zheng (2013) approach to find the maximum
penalized estimator of R using the following algorithm.

Algorithm 1. Find maximum penalized likelihood estimator of R says R* using the invariance prop-
erty as follows

e Case 1: u; = up, then

e Case 2: uj # (o, then

A; =it ;1»[ =i
Re=|1- e 5 |1t >p)+ e |1t <)
~ A 1 2 ~ ~ 1 2)»
A+ 4 A+ 4
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where A7, u}, 43, 15 are the maximum penalized likelihood estimator of A1, u1, A2, u2 (Zheng, 2013).
Now, we will study the distribution of R* as follows case 1: U1 = U, then
G S
T+d 1+ 48

Suppose u = /f; //fj, then from convolution rule we get the probability density function of U is
f(u) = 1/(1 + u?), u > 0 and the moments about zero of R* is given by
E[R] =Ell +u]”
273 n273 rFy [{%’1’1}’{1_%’%_%}’_1]

+
1 : 1 ins
e"iimS 4 o (e_Z"” +e"§>(e jins +e”§‘) s—1

and the mean square error (MSE) of R* is given by

2] 2= (=2l + A3

MSE(I?*) =E [(1? - TR

Butin case 2: y; # u, then

X A, Y M 4
R =|1-< Ae‘z I > @)+ | —=e " |1} <@5).
AL+ 45 AL+ 45

The exact distribution of R* does not exist. So, we find the asymptotic distribution of R* as: as n — oo
and m — oo the R* has asymptotic normal with mean R and asymptotic variance Var(R)

where ® = (A1, u1, A2, i2) and Il.‘j‘ is the (i, /)" element of the inverse of the Fisher information matrix
I;; which is given by

E|Zhe| B[Fe] E[45e] E[E52]
Lo |ElE [il e e[z elzae)|

plme) e[zne] p|one| c|ne)

Ela] ElEE) el e

Var (1}) Cov (A7,7) Cov(4;,45) Cov (a;,u3)
| Cov(upaq) Var(u) Cov (u;, 43)  Cov (1}, 15)
L = .

Cov (43, 4;) Cov(5,u;) Var(a3) Cov (A3, 113)

Cov (3, 4;)  Cov (u5.47) Cov (3, 43)  Var(u3)
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and

2 2 2 /12

*\ /ll k) _ /12 *Y) /ll Y — 2
Var(/ll) = P 1, Var(/lz) = — 1, Var(,ul) = m, Var(uz) = m,

/12
Cov (17, 47) = Cov (i}, A]) = =€ Cov (47, 43) = Cov (43, 17) = 0,
n

Cov (47, 15) = Cov (15, A7) =0, Cov (u}, 45) = Cov (A5, u7) =0,

/12
Cov (7, 15) = Cov (5, 47) =0, Cov (A5, 5) = Cov (3, 43) = 2,
6R /l H1 ;HZ FIA’“Z (ll ) /‘l;ﬂz /l ﬂz/]l
e e 1 —M2)e M e .
- —_ + - I(u; < + ——=1I(u; > ),
Y TG T S A Yoy M T T i A S WAL e
OR e beh  (mouDen  en
e Y 2—u)e e
— = J(u; <)+ - I(1y > ),
oL e R R T ) A )
H1=H MM
OR e e
—_ = i < + 1 > N
6/11 A1+ Ay (1 < p2) AL+ A2 (> ko)
M1~ H2—H]
OR e e n
T 1 < — 1 > .
6/12 L+ (/11 #2) A1+ ('UI #2)

Hence an asymptotic 100(1 — @)% confidence interval for R is given by

Zo —_
Re|R + 2 Var(R)|, 3.1
( m\/ ( )’ (3.1

where Z,,, is the upper (a/2)" quantile of standard normal distribution and \7z;r(R*) is the value of
Var(R*) at maximum penalized likelihood estimators of parameters ® = (A, uy, A2, ().

3.2. Bayes estimator of R

Lindley (1980) proposed on approximation technique to find the Bayes estimator of the stress-strength
parameter under squared error loss function and under Jeffrey prior (o) as follows.

Algorithm 2.

1. Find the penalized maximum likelihood estimator of ® = (41, 1, A2, 42) and R says ©* = (47, 7,
A, 13) and R

2. Compute the Bayes estimator of R says R® as

A 1 4 4 . . 1 4 4 4 4 R
RE=FR*+ 3 ZZ(R:F] +2R:‘pj)0'ij]+ E[ZZZZLijkO'ijO'klR; .

Note: all terms and derivatives are calculated by replacing ® = (A1, uy, A2, 42) and R with their
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maximum penalized likelihood estimator. Where

-

PR 2pe ™
a2 (L +)?

H1—H2
e T (250l = +112) + B = )2 +411 =) + 2 (1 =12+ B (1 —112)°)
+

1= Il > p]

I <us],
/1?(/11_'_/12)3 [/'ll H2
62&* PZI_”I (H ) F]A_PZ H ]A_FZ
en |- e T e
R =Ry = = — 1 > — - 1 < N
2T 0 (A1 +)? ot > sl (A + ) (A1 + A)? Ly < gl
R oy
PR e 2 (4 (A +u — o) — (Al — g + 1))
Rix =Rz = = I >
p= R = o L+ )0 (k1 > o]
Iy s
e (—/11 Ay =y + o) + A2 (g — o) + /11)1 |
+ < S
2+ 4)° Lo < e
- H1—H2
R R 621%* eHZA;l , ] e A (/llﬂl + /lzﬂl - (/11 + /12)/12 + /l%)l ]
= = = > + < s
A W s R R B +1)? i < g
re O} )
e 2 e 1
=0 T sl - — Iy < ),
22 a2 L) (11 > w2l L) [t < po]
PR (= )~ A (o= i+ 1) e
e 1 =) = =+ [ e
R =R = = 1 > [ < R
n =R = G o Eh+ ) (11 > pol Lt )2 [11 < pol
N M )
R_R_62R*_ e B s > o] e T s < ]
PRI dwon T (4 + ) =i L+ Hal
oy
ok e n (A%(m—uz)mz—m+yz)+2zlﬂz(az<ul—uz)u’;‘—(m—uz)z)—A%wl—m)Z)I[ﬂ ,
= — >
e B+ 1) 1
2T
1e 71
+ 2 7 Iy < wl,
(/l] +/12)3 [Iul #2]
PR
R =R = —
W= R = o o
e S (At + gty — (A + Atz + 2
e )+ b ) | e T (A +dopy = (i + )i+ A3
= > 3 [ﬂl >/.12]+ 5 > I[ﬂl <ﬂ2]s
A3 (4 + ) AT (4 + )
R e
e 2 e 1
Ru= = iy > o]+ ————— Iy < o],
44 o LT (1 > o] RN [t < po]
g = ]i}l,
Cdp . m+2 1]
Sy P ) R B T
o [ +2 1 I
p = — —_——— .
T T a2 w1+
ap A+2 1
pP3 = =

(9_/]-2_/l%+4/12+2_/l_2_]+/12,
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G w2 | 1
pa Oy p+4n+2 po 1+’
OR 1 b b u ) 12 2 iy
e e | —p2)e T e ®
Ri=— =— + - Iy < po) + ————51(u1 > ),
T R Y P I A Ry M Ty R R I AL R
H =)
OR e e
Ry = — = 1 < + 1 > 5
) LT (U1 < p2) SN (1 > o)
HL-HD Al H2-H] Ha—H
OR Are M de 2 (U — ) e 2 e n
Ry=—=—7"—-—-1] < + + - I > ’
S T B N ¥ s E A PG PSPy R
ALK -y
OR e e
Ry=—=- I(u, < - I(u; > o),
4 P L (1 < p2) PR (U1 > p2)
Pre 2m-1
Lin = > = o
o &
FPr® 2m-1)
L33z = 3 = R
PYY e
@) 2n
L = L = L == = —,
121 = Loyi = Lo PYEEE
Pr®©)  om

Lizs = Lazg = Lags = ———— = —,
433 334 343 a/lgaluz /13

Br©  2n(n-1)

Ly = Loy = Lyyp =

Y D
Pr®) 2m(m-1)
443 344 434 FYR B,U% /lg

Note: other L = 0.

4. Different estimators of R for incomplete data

It is very difficult to get a complete data and the data are often incomplete. In medical, industrial
or others fields researchers might stop their experiment before all items fail because they often do
not have time to observe the lifetime of all items in the study or items fail due to random causes.
Consequently, researchers use censored data. There are several types of censored data (Type I and
II) including right, left, interval, and truncation censoring. Saracoglu ef al. (2012) combine type
II censoring and a progressive censoring scheme called progressive type II censoring. This scheme
allows the researcher to remove active units during the experiment and is defined as: Given m < n,
and Py,..., P, non-negative integers such that P; + --- + P,, = n — m. Where n stands for the items
are on the life test at the same time. At the time of the first failure, one chooses randomly P; items
from the rest of the active n — 1 and then discards. In a similar way, at time of the second failure, one
selects P, out of n — P; — 2 remaining items at random and consequently remove it. Eventually, at the
time of the m™ failure, all the remaining active items are removed (see Saracoglu e al. (2012) and
references for the advantages of this censoring scheme).
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4.1. Maximum penalized likelihood estimator of R for incomplete data

In this subsection, maximum penalized likelihood estimator of R is obtained for progressive type 11
censored data as follows:

Algorithm 3.

1. Suppose two progressive censoring schemes (ny,mi, Py,...,Py,) and (na,ma, Q1,..., Qy,) for
two independent random variables X and Y with two parameter negative exponential distribution
NED(A1, 11) and NED(Ay, o) respectively.

2. Suppose two progressively censored samples as X = (Xi.m,:n,5 - - - » Ximy my .oy ) from strength variable
Xand Y = (Yimynys - - - » Yinyymy.n,) from stress variable Y.

3. Find the joint density probability functions of X = (Xiunm5 -« X)) a0d Y = (Yiumyings - - -
Ypmyny) @S:

m

P;

kim0 2m)) = 1 [ | FGe(1 = FO)™,
i=1

my
F T O+ 3m) = &2 | | FODA = Frp?,

=1

where
co=mm —Pr—1--(m-m—-P—- =Py +1),
=mm -0 D (m-m—0s—=0p,1 +1)

are normalizing constants see Balakrishnan and Aggarwala (2000).

4. Find the penalized likelihood function

my ny

L7(8) = crex(eim, = 1), =) | | A1 = FG)™ [ | Fon(1 = Forp @,

i=1 Jj=1
5. Taking the logarithm of penalized likelihood function

I""(®) = Logc; + Loges + Log(x1.my—,) + LoV 1:my—p,) — mi1Logdy — myLogAs
my

D P+ (i - ) -
i=1

1 1 &
52 : ;<Qj +1)(y; = p2).

52
6. Find maximum penalized likelihood estimators of ® = (Ay, Ay, uy, o) as
D P+ Dxi = xim, Y (Pi+ 1)
i=1 i=1

/112” = — IZ(QI + 1)y, — Y2, Z(Qj + 1)

J=1 J=1

1
pro_
Fr=—

s

—_—

bl
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S (P4 DX = X, Y (P + 1)
(m =) X (P + 1) |
2i2Qj+ Dy = yiam, X72(Q+ 1)
(m =1 X72(Q;+ 1) .

pro_
My = Xtmy —

pr

1y

=V my T

7. Find maximum penalized likelihood estimator of R says R”" using the invariance property as:

e Case 1: u; = o, then

A
A7+ A
e Case 2: u; # o, then

)

pr
4

A
RPV = |:1 — ﬁe
Al + 4

Now to find the asymptotic 100(1 — @)% confidence interval for R is given by

Ze —
2 Var(RP") |,
Vn+m ( ))

where Z,, is the upper (a/ 2)"" quantile of standard normal distribution and \7z;r(R”") is the value of
Var(RP") at the penalized maximum likelihood estimators of parameters ® = (11, 1, A2, 2), where

pr
A,
pr pr
Al + 4

I(pfr > ,ugr) + I(/,tfr < u‘;r).

Re (RP’ + “.1)

L& OR OR
Var(R") = ; ; 30, 00, (inl)pr,
where ® = (A1, u1, As, o) and Il.‘j‘ is the (i, /)" element of the inverse of the Fisher information matrix
I;; given by
|| e[55e) e[552) |55
2 1pr . 2 _2pr
o |Elan E| | (552 El45e
Co= . P, o a2
UolE[SsR) E[552] B|4he| elH52
E[ga] ETa] [‘3;52’2?)] E| e
Var (A7) Cov(A}", ut"y  Cov (A", 48")  Cov (A", 1")
(I’l)pr B Cov(u1 ,/lpr) Var(,u‘fr) Cov( or /l"") Co V(u1 T )
Y cov (/l'”, /l’”) Cov (/lpr,,u‘fr) Var (/lpr) Cov (/lgr,yz )
Cov (F‘z ,/l"r) Cov (,u2 T ) Cov (,u2 ,/lpr) Var (;1’2”)
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and
var (47 - 20m; - 1)2;110 tP)-mh () - 2(mz - 1)2)% (i +0) - mz’
V)= oy )
Cov (A", 4") = Cov (uf’, A1") = W%”’) Cov (A", 5") = Cov (4", ") = 0,

Cov (/lpr,,uzr) Cov (;12 , /l"r) 0, Cov (,u1 ,/l"") Cov (/lgr,u’fr) =0,
43

Cov (:“?ru“gr) = Cov (/1]2”’:“1r) =0, Cov (ﬂg’,”gr) = Cov ('uz ’/lpr) ) m

4.2. Bayes estimation and credible interval R for incomplete data

To find the Bayes estimator of R as:
Assume all parameters A;, A», i1, 4p are random variables having gamma prior distributions with
parameters (a;, b;), i = 1,2, 3,4 respectively. Where

“1

() = )A‘“ Leib Ay ay, by > 0,
az

() = 1, )A"Z letb2 2y, ap, by > 0,
aB

ﬂ(ﬂl) r( ) a; 16_”1b3, ul,a3,b3>0,
ba4 as— 1 b,

(o) = T )llz TR o, as, by > 0.

Then the joint posterior density function of Ay, s, 1, 2 is given by

L(datalA, Ao, uy, u2)m(A)m(A2)m(uy )m(uz)
b BB Ldataldy, A, gy, ) (A)a(A)m (s () d s d Ao dr(uay Y (iaz)

But the joint posterior density function can not compute analytically. So we use MCMC technique to
compute Bayes estimator of R and construct the corresponding credible interval.

Now compute the Bayes estimator using MCMC technique when u; = u, and under the assump-
tion that the parameters A;, Ao, 4 have independent inverse gamma (IG) priors with the probability
density functions as:

L(Ay, A2, 1, upldata) =

a1

1"()

a‘7

b
mi(Alag, by) = A : Tll, A1 >0,

Lo e® 1> 0,
T k>
as

b3 —a3—1 o
m3(plas, by) = Fan™ e, u>0,

ma(Azlaz, by) =
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where ay,ay, a3, by, by, by are chosen to reflect prior knowledge about A;, A, u. The posterior proba-
bility density functions of 1, A, are

my
A1y, A, data ~ IG (ml +ay, by + Z(Pi + D(x; —#)),

i=1

my
Aolp, A1, data ~ IG (mz +ax, by + Z(Qj + D(y; —ﬂ)]
=1
and

my my

1\“! by 1 1
£y, Ao, data) o (x1., —u)(ylzmz—m(—) exp [-=2 =" (Pi+ D(xi=)=— > (Q;+ D(y;—1)
H B A =1

The posterior probability density function of y is unknown, but we assume it is a normal distribution
and use Metropolis-Hastings algorithm to find the Bayes estimator as:

Algorithm 4.
1. Start with an initial guess /1(10) , /1(20), u®.
2. Sett=1.

3. Using Metropolis-Hastings, generate u from f(u|A;, 1>, data) using Metropolis-Hastings algo-
rithm with the proposal distribution N(u'~!, 1).

4. Generate A" from IG(m; + ay, by + X7 (P; + D(x; — p~1)).
5. Generate /1(2’) from IG(m;, + a, by + ZT;I(QI. + D= py).
6. Compute R®.
7. Sett=1t+1.
8. Repeat steps 3—7, T times.
The Bayes estimator of R says Rg, compute under square error loss function is given by
A S R
where M is burn-in period. Also the highest probability density (HPD) 100(1 — y)% credible interval
is obtained by the method of Chen and Shao (1999).
5. Simulation study

In this section a simulation study is performed to compare the performance of estimates of R obtained
by using different methods; all computations are obtained using Mathematica 10.
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Table 1: Results of simulation study for complete data

Marwa Khalil Hassan

Maximum penalized

Bayes estimator

(n,m) (/IT s /l;, /f{ s /1;) likelihood estimator ACI
R Bias  MSE RE Bias  MSE
(A1, A2, 11, 2) = (1,1, 1.5, 1) and R = 0.6967, py > o
(30,30)  (0.0738,0.0520,2.4090, 1.9489) 0.9999  0.0050 0.0015 0.9997 -0.0001 0.0000 (0.6200, 1.0000)
(30,50)  (0.0597,0.0677,2.4450,1.9320) 0.9997  0.0037 0.0011 0.9920 -0.0004 0.0000 (0.6101,0.9999)
(30,100) (0.4850,0.0772,2.4505,1.9222) 0.9993  0.0023 0.0007 0.9989  0.0003 0.0000 (0.6011,0.9995)
(50,50)  (0.1026,0.0653,2.4016,1.9354) 0.9996  0.0030 0.0009 0.9991 -0.0004 0.0000 (0.6412,1.0000)
(50,100) (0.0567,0.0682,2.4444,1.9356) 0.9996  0.0020 0.0006 0.9993 -0.0002 0.0000 (0.6454,1.0000)
(100, 100) (0.0689,0.0677,2.4232,1.9323) 0.9996  0.0015 0.0004 0.9993 -0.0002 0.0000 (0.6600, 1.0000)
(A1, Aoy, 12) = (1.5,1,1.5,1.5) and R = 0.6, 1 = o
(30,30) (0.1064,0.0659,2.9110,2.4360) 0.6192  0.0003 0.0000 0.6182 —0.0006 0.0000 (0.5999,0.6400)
(30,50)  (0.0922,0.0764,2.9090,2.4234) 0.5468 —0.0006 0.0000 0.5457 -0.0001 0.0000 (0.5124,0.7000)
(30,100) (0.1572,0.0612,2.8360,2.4398) 0.7197  0.0009 0.0001 0.7195 -0.0001 0.0000 (0.5300,0.7500)
(50,50) (0.1417,0.0751,2.8666,2.4295) 0.6536  0.0005 0.0000 0.6524 -0.0011 0.0000 (0.5504,0.7700)
(50,100) (0.1039,0.0565,2.8953,2.4490) 0.6474  0.0003 0.0000 0.6473  0.0003 0.0000 (0.5965,0.7584)
(100, 100) (0.0885,0.1064,2.9112,2.3955) 0.4539 -0.0007 0.0001 0.4519 -0.0007 0.0000 (0.4210,0.7145)
(/11,/12,#1,/12) = (1, 1.5, 1.5,2) and R = 0.2420, M1 < (2
(100, 100) (0.0838,0.1059,2.4260,3.3815) 0.0001 0.2419 0.4419 0.0016  0.1622 0.4386 (0.0001,0.2500)

MSE = mean square error; ACI = asymptotic confidence interval.

5.1. Simulation study for complete data

1. For given values of (4, A3, u;, to) compute the true value of R from (2.1) or (2.2).

2. For given (n, m) generate sample from size n from (1.1) with given parameters (A1, ;1) and gener-
ate sample from size m from (1.1) with given parameters (1, u).

3. Evaluate maximum penalized likelihood estimators of (4, 42, 1, 42) and R using Algorithm 1.

4. Repeat step 2-3 N = 10* times and calculate the biases and MSEs.

5. Calculate the asymptotic confidence interval (ACI) of R according to (3.1).

6. Using 2—4 to compute R? using Algorithm 2.

7. Calculate the biases and MSEs for the Bayes estimator.

Table 1 shows the simulation study results for the complete data. We observe that for large samples
size the estimator values of R* and R® became constant, when y1; = u» the estimator values of R nearest
of its true vales. R has bad estimator when p; < u, also biases and MSE’s decrease when sample

sizes increase.

5.2. Simulation study for incomplete data

In this subsection we compare the maximum penalized likelihood estimator and Bayes estimator using
the MCMC technique of R in bias, MSE as well as given the ACI and HPD credible intervals for

progressive type Il censored data as:

1. For different parameter values (1y, Ap, u1, 12) = (1,1,1.5,0.5), (1,1, 1.5,1.5), and(1, 1,2.5,2.5).
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Table 2: Results of simulation study for incomplete data (biases and MSE’s) of maximum penalized likelihood

estimator and Bayes estimator of R

cs Maximum penalized Bayes estimator
P.0) likelihood estimator Prior 1 Prior 2 Prior 3

’ RP" Bias MSE R}, Bias MSE R}, Bias MSE Ry, Bias MSE

(A1, Ao, 1, p0) = (1,1,0.5,0.5)
I 05520 0.0026 0.0001 0.5001 -0.0001  0.0000 0.5108 —0.0108 0.0001 0.5027 —0.0027  0.0000
(I,I)  0.3480 -0.0075 0.0011 0.4874  0.0126  0.0001 0.4840  0.0160 0.0002 0.5149 -0.0149 0.0002
(I, D) 0.5338 0.0016  0.0000 0.4951 0.0049  0.0000 0.5058 —0.0058 0.0000 0.4988 0.0012  0.0000
(IL 1) 03125 -0.0093 0.0017 0.4977 0.0023  0.0000 0.4922  0.0078  0.0000 0.4872  0.0128 0.0001
(L 1I) 0.5245 0.0012  0.0000 0.4942  0.0058 0.0000 0.5135 -0.0135 0.0001 0.4816  0.0184 0.0003
(IIL 1II)  0.4017 —-0.0049 0.0004 0.5132 -0.0132 0.0001 0.4822 0.0178 0.0003 0.4992 0.0008  0.0000

() = (1,1,15,1.5)
@I 05753 0.0037  0.0002 0.4790  0.0209 0.0004 0.5064 -0.0064 0.0000 0.5023  -0.0023  0.0000
(I, 1) 0.7423 0.0121  0.0029 0.4919 0.0082  0.0000 0.4788 0.0211  0.0004 0.4917 0.0082  0.0006
(I, 1D  0.5731 0.0036  0.0029 0.5065 —0.0065 0.0000 0.5280 —0.0280 0.0007 0.4847 0.0152  0.0002
(IL 1) 03524 -0.0073 0.0010 0.5108 —0.0106 0.0001 0.5013 —0.0013  0.0000 0.4968 0.0031  0.0000
L 1I) 0.3085 —0.0057 0.0006 0.4850  0.0144 0.0003 0.4904  0.0095 0.0000 0.5106  0.0106 0.0001
(IIL 1)  0.3461 —-0.0076  0.0011 0.5185 —0.0185 0.0003 0.5220 -0.0220 0.0004 0.5152 -0.0192  0.0002

i oo i) = (1, 1,2.5,2.5)
I, I) 0.6344  0.0067 0.0009 0.4820  0.0179 0.0003 0.4780  0.0219 0.0004 0.4958 0.0041  0.0000
(LII) 0.5930  0.0046 0.0004 0.5116 -0.0116 0.0001 0.4886  0.0113  0.0001 0.5162 -0.0162 0.0002
(I, 1) 0.5433 0.0021  0.0000 0.4999 0.0001  0.0000 0.5046 —0.0046  0.0000 0.4990  0.0609  0.0000
(IL 1) 0.3009 —0.0099 0.0019 0.5094 —0.0094  0.0000 0.5023  —0.0023  0.0000 0.4933 0.0066  0.0000
(L II) 0.4359 —0.0032 0.0002 0.4696  0.0303  0.0009 0.5295 -0.0295 0.0008 0.4812  0.0187 0.0003
(1L, ) 0.5191 0.0009  0.0000 0.5089 —0.0089  0.0000 0.5016 —0.0016 0.0000 0.4939 0.0060  0.0000

MSE = mean square error; CS = censoring schemes.

Also use censoring schemes (CS) as

1=(10,30) = (0,0,0,0,0,0,0,0,0,20),
II = (10, 30) = (20,0,0,0,0,0,0,0,0, 0),
I =(10,30) = (2,2,2,2,2,2,2,2,2,2).
2. Find RP" using Algorithm 3.
3. Compute bias and MSE.

4. Compute ACI of (4.1).

5. Find the Rﬁr and compute HPD credible interval using Algorithm 4 and use censoring schemes in

1 and the following priors

Prior1l. a;=0,b;=0, i=1,2,3.
Prior2. a;=1,b;=2, i=1,2,3.
Prior3. a;=2,b;=3, i=1,2,3.

Tables 2 and 3 show results of simulation study of R for incomplete data.

6. Data analysis

In this section, we present a real example to sure our proposed model can apply in practice. Badar and
Priest (1982) reported the data represent the strength measured in GPA for single carbon fibers, and
impregnated 1000-carbon fiber tows. Single fibers were tested under tension at gauge lengths of 20
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Table 3: Comparison between ACI and HPD credible interval of R

cs ACT HPD credible interval of R

Prior 1 Prior2 Prior 3
(A1, A2, 1, 2) = (1, 1,0.5,0.5)
@D (0.4832,0.6207) (0.4510,0.5491) (0.4607,0.5608) (0.4534,0.5519)

(I, II)

(0.3978,0.6021)

(0.4397,0.5352)

(0.4366,0.5314)

(0.4644,0.5638)

(1, TII) (0.3490, 0.6509) (0.4466,0.5436) (0.4562,0.5554) (0.4499, 0.5476)
(IL, 1) (0.3002,0.6997) (0.4490, 0.5465) (0.4440, 0.5405) (0.4395,0.5350)
(I, 1I) (0.4436,0.5563) (0.4458,0.5426) (0.4631,0.5638) (0.4344,0.5288)

(IIL, 1I) (0.3803,0.6196) (0.4629,0.5635) (0.4349,0.5294) (0.4503,0.5481)

(A1, A2, 1, 2) = (1,1, 1.5, 1.5)
@D (0.3894,0.6105) (0.4320,0.5259) (0.4568,0.5561) (0.4531,0.5515)
(L1 (0.3839,0.6160) (0.4435,0.5398) (0.4319,0.5278) (0.4436,0.5399)
(1, TII) (0.3899,0.6105) (0.4568,0.5561) (0.4762,0.5797) (0.4372,0.5322)
(IL, 1) (0.3685,0.6314) (0.4608, 0.5609) (0.4522,0.5504) (0.4481,0.5455)
(I, 1IT) (0.3606,0.6393) (0.4850,0.5326) (0.4424,0.5385) (0.4606, 0.5607)
(IIL, 1I1) (0.3997, 0.6002) (0.4677,0.5193) (0.4709,0.5732) (0.4647,0.5657)

Qi Ao ) = (1,1,2.5,2.5)
@D (0.4190, 0.5809) (0.4348,0.5293) (0.4311,0.5248) (0.4472,0.5443)
(L 10 (0.2338,0.7661) (0.4615,0.5618) (0.4407,0.5365) (0.4656, 0.5666)
(I, TII) (0.4190,0.5809) (0.4509, 0.5489) (0.4551,0.5541) (0.4501,0.5479)
(L, 1) (0.3724,0.6275) (0.4595,0.5593) (0.4531,0.5515) (0.4449,0.5416)
(I, 1IT) (0.4389,0.5610) (0.4236,0.5156) (0.4776,0.5814) (0.4340,0.5283)
(IIL, 1) (0.4501,0.5498) (0.4590,0.5588) (0.4524,0.5507) (0.4455,0.5423)

CS = censoring schemes; ACI = asymptotic confidence interval; HPD = highest probability density.

mm (data set 1) and 10 mm (data set 2). These data have been used previously by Raqab and Kundu
(2005), Kundu and Gupta (2006), Kundu and Raqgab (2009), and Asgharzadeh et al. (2011).

Data set I: (gauge lengths of 20 mm).

1.3121.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 2.006 2.021 2.027 2.055
2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426
2.4342.4352.478 2.490 2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684
2.6972.7262.7702.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096
3.128 3.233 3.433 3.585 3.585

Data set II (gauge lengths of 10 mm).

1.901 2.1322.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474 2.518 2.522 2.525 2.532
2.5752.6142.6162.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937 2.977 2.996
3.0303.125 3.139 3.145 3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435
3.493 3.501 3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020

We apply our model as:

1.
2.

Check the validity of two parameter negative exponential for given data sets see Figure 2.

Compute maximum penalized likelihood estimator and Bayes estimator of R for complete data.
Table 4 shows the results.

. Compute the maximum penalized likelihood and Bayes estimator for incomplete data and corre-

sponding confidence interval using two different progressively censored samples schemes (Table
5) and data analysis results for incomplete data (Table 6).
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Figure 2: Fitted two parameter negative exponential distribution for data set I and data set II.

Table 4: Data analysis results for complete data

AL A5 17 145) R R” ACI
(1.3707,1.214,1.8792,1.2944) 0.70986 0.6807 (0.6985,0.7098)

ACI = asymptotic confidence interval.

Table 5: Data and the corresponding censored schemes

X 1.312 1.479 1.552 1.803 1.944 1.858 1.966 2.027 2.055 2.098
P; 1 0 1 2 0 0 3 0 1 50
yj 1.901 2.132 2.257 2.361 2.396 2.445 2.373 2.523 2.532 2.570
Q; 0 2 1 0 1 1 2 0 0 44

Table 6: Data analysis results for incomplete data
@A 7 i) = (2.8849,2.2840, 1.257, 1.2576)

Method Estimator of R Confidence interval
Maximum penalized likelihood 0.5580 (0.5000, 0.5800)
Bayes estimator (prior 1) 0.5313 (0.4793,0.5834)
Bayes estimator (prior 2) 0.4756 (0.4289,0.5222)
Bayes estimator (prior 3) 0.5138 (0.4634,0.5641)

7. Conclusions

In this paper, we apply a maximum penalized likelihood method to estimate a stress-strength param-
eter based on two parameter negative exponential distribution and compare it with the regular max-
imum likelihood method. Subsequently, it was decided the maximum penalized likelihood method
is better than the regular maximum likelihood method because it has a smaller variance. We apply
the maximum penalized likelihood method for complete and incomplete data. We also introduce a
Bayes estimator using Lindley approximation for complete data and MCMC technique for incom-
plete data. A simulation study is performed to compere between different estimators in biases and
MSE:s for complete and incomplete data. The Bayes estimate of R, and the corresponding credible
interval can be obtained using the Gibbs sampling technique. In addition, we apply our model on real
data and recommend the use of two parameter negative exponential distribution as a reliability model
for complete and incomplete data.
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