• Title/Summary/Keyword: Barrette Foundation

Search Result 8, Processing Time 0.019 seconds

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.

Dynamic response of vertically loaded rectangular barrettes in multilayered viscoelastic soil

  • Cao, Geng;Zhu, Ming X.;Gong, Wei M.;Wang, Xiao;Dai, Guo L.
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.275-287
    • /
    • 2020
  • Rectangular barrettes have been increasingly used as foundations for many infrastructure projects, but the vertical vibration of a barrette has been rarely addressed theoretically. This paper presents an analysis method of dynamic response for a rectangular barrette subjected to a time-harmonic vertical force with the aid of a modified Vlasov foundation model in multilayered viscoelastic soil. The barrette-soil system is modeled as a continuum, the vertical continuous displacement model for the barrette and soil is proposed. The governing equations of the barrette-soil system and the boundary conditions are obtained and the vertical shaft resistance of barrette is established by employing Hamilton's principle for the system and thin layer element, respectively. The physical meaning of the governing equations and shaft resistance is interpreted. The iterative solution algorithm flow is proposed to obtain the dynamic response of barrette. Good agreement of the analysis and comparison confirms the correctness of the present solution. A parametric study is further used to demonstrate the effects of cross section aspect ratio of barrettes, depth of soil column, and module ratio of substratum to the upper soil layers on the complex barrette-head stiffness and the resistance stiffness.

A Case Study on the Design of High Capacity Foundations for High-Rise Buildings (국외 초고층 건축물의 대형기초 적용 사례)

  • Cho, Sung-Han;Han, Byoung-Kwon;Lee, Je-Man;Kim, Tae-Bum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.78-89
    • /
    • 2007
  • Two design examples of deep foundations for high-rise buildings on soft ground are introduced in this paper. The first one is a 54-story building in Ho-Chi-Minh city, Vietnam, which was designed to be founded on $2.8m{\times}1.0m$ barrette foundations with approximately 60m to 75m depth. Based on a number of design guides and existing load test data from the construction sites in Ho-Chi-Minh city, the capacity of a barrette foundation in sand or clay layered ground was calculated to be 17.2MN to 27.8MN depending on the installing depth. The second one is a 40-story building in Baku city, Azerbaijan, which was designed to be supported by 2.0m diameter bored pile foundations with approximately 23m depth. As analytical or empirical guides for the local ground conditions were very limited, the design procedure from the SNiP Code, one of Russian specifications, was adopted and used to calculate the pile capacity. The capacity of bored pile foundation in highly weathered soil was expected to be 14.8MN to 15.5MN depending on the boring depth.

  • PDF

Load-Displacement Characteristics Study of Barrette Pile by Bi-directional Loading Test (양방향재하시험을 통한 바렛말뚝의 하중-침하특성 연구)

  • Lim, Dae-Sung;Park, Seong-Wan;Lee, Sang-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.754-759
    • /
    • 2008
  • Recently, the construction of buildings and large bridges has been increasing rapidly causing foundation structure growing larger then before, especially in the use of large size cast-in-place piles. Barrette Pile will usually be used at the site where diaphragm wall is the retaining wall to save time and cost in mobilization of equipments. This study uses bi-directional loading test data obtained from two different sites to observe the bearing capacity and displacement characteristics of barrette pile. Numerical analysis of the test is done by using commercial 3D computer program and the interface effect and capacity of the pile as well as displacement characteristics of the pile is verified.

  • PDF

An Economic Analysis and Performance Prediction for a Ground Heat Pump System with Barrette Pile (Barrette 파일을 이용한 지열시스템의 채열 성능 예측 및 경제성 분석에 관한 연구)

  • Chae, Ho-Byung;Nam, Yujin;Park, Yong-Boo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.600-605
    • /
    • 2013
  • Ground source heat pump systems (GSHP) can achieve higher performance of the system, by supplying more efficient heat source to the heat pump, than the conventional air-source heat pump system. But building clients and designers have hesitated to use GSHP systems, due to expensive initial cost, and uncertain economic feasibility. In order to reduce the initial cost, many researches have focused on the energy-pile system, using the structure of the building as a heat exchanger. Even though several experimental studies for the energy-pile system have been conducted, there was not enough data of quantitative evaluation with economic analysis and comprehensive analysis for the energy-pile. In this study, a prediction method has been developed for the energy pile system with barrette pile, using the ground heat transfer model and ground heat exchanger model. Moreover, a feasibility study for the energy pile system with barrette pile was conducted, by performance analysis and LCC assessment. As a result, it was found that the heat exchange rate of a barrette pile was 2.55 kW, and the payback period using LCC analysis was 8.8 years.

Evaluation of Shear Load-transfer Barrette Pile in Sandy Soils (사질지반에서의 바렛말뚝의 주면하중전이 거동 평가)

  • Lee, Sang-Rae;Park, Seong-Wan;Lim, Dae-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.5-13
    • /
    • 2010
  • Recently, the use of barrette pile has remarkably increased for high-rise building and bridge foundations. However, relatively few studies have been made for analyzing barrette pile behavior by considering shear load transfer on interface between pile and soils. Therefore, in this paper, an empirically derived equation is proposed. This equation correlates the load transfer curve of barrette piles with the N value from field standard penetration test based on full-scale load tests. The results from all procedures are presented. In addition, the effect of interface on pile-soil is evaluated using 3-D non-linear finite element method and verified with the field data.

A Construction Case of Massive Foundation for High Rise Building (A Case of Barrette Pile) (초고층 건축물 대형기초의 시공 사례 (바레트 말뚝 중심))

  • Joeng, Gyong-Hwan;Jung, Dong-Young;Moon, Jun-Bai;Kim, Dong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.90-104
    • /
    • 2007
  • The trend of current urban redevelopment and new city development project shows that the superstructure of building is getting larger and higher in consequence of a limited plottage condition and the preference of landmark. For this reason, it is definitely required to extend pile diameter and install the pilein deep foundation to support superstructure. The pile method causes construction-related problems such as increasing quantities, difficulty of storage & transportation material and decreasing design load while construct pile in deep foundation. The Bored Pile method has applied to minimize those problems. As above shown, this article will be presented construction case study of Barrette Pile and R.C.D in order to make a counterproposal for the quality control of a large building foundation work.

  • PDF

Study on feasibility analysis for ground source heat pump system using the building foundation (건물기초 이용 지열시스템의 도입 타당성 분석에 관한 연구)

  • Chae, Ho-Byung;Nam, Yujin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.155-157
    • /
    • 2013
  • Ground source heat pump(GSHP) systems have been attracted as high-efficient energy-saving technology, but the building clients and designers have hesitated to use GSHP systems which is a expensive initial installation and a uncertain economic feasibility. Therefore In order to reduce the initial cost, many researchers have focused on the energy-pile system using the structure of the building as a heat exchanger. Even though many of experimental studies for energy pile system have been conducted, there was not enough data of a quantitative evaluation with the economic analysis and comprehensive analysis for energy-pile. In this study, the feasibility study for the energy pile system with a barrette pile was conducted by the performance analysis and LCC assessment.

  • PDF