Browse > Article
http://dx.doi.org/10.12989/gae.2020.23.3.275

Dynamic response of vertically loaded rectangular barrettes in multilayered viscoelastic soil  

Cao, Geng (Key of Laboratory for RC and PRC Structure of Education Ministry, Southeast University)
Zhu, Ming X. (Key of Laboratory for RC and PRC Structure of Education Ministry, Southeast University)
Gong, Wei M. (Key of Laboratory for RC and PRC Structure of Education Ministry, Southeast University)
Wang, Xiao (School of Civil Engineering, Southeast University)
Dai, Guo L. (Key of Laboratory for RC and PRC Structure of Education Ministry, Southeast University)
Publication Information
Geomechanics and Engineering / v.23, no.3, 2020 , pp. 275-287 More about this Journal
Abstract
Rectangular barrettes have been increasingly used as foundations for many infrastructure projects, but the vertical vibration of a barrette has been rarely addressed theoretically. This paper presents an analysis method of dynamic response for a rectangular barrette subjected to a time-harmonic vertical force with the aid of a modified Vlasov foundation model in multilayered viscoelastic soil. The barrette-soil system is modeled as a continuum, the vertical continuous displacement model for the barrette and soil is proposed. The governing equations of the barrette-soil system and the boundary conditions are obtained and the vertical shaft resistance of barrette is established by employing Hamilton's principle for the system and thin layer element, respectively. The physical meaning of the governing equations and shaft resistance is interpreted. The iterative solution algorithm flow is proposed to obtain the dynamic response of barrette. Good agreement of the analysis and comparison confirms the correctness of the present solution. A parametric study is further used to demonstrate the effects of cross section aspect ratio of barrettes, depth of soil column, and module ratio of substratum to the upper soil layers on the complex barrette-head stiffness and the resistance stiffness.
Keywords
barrette; multilayered viscoelastic soil; continuum; Hamilton's principle; dynamic response;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Vallabhan, C.G. and Das, Y.C. (1988), "Parametric study of beams on elastic foundations", J. Eng. Mech., 114(12), 2072-2082. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2072)   DOI
2 Vallabhan, C.G. and Das, Y.C. (1991a), "Modified Vlasov model for beams on elastic foundations", J. Geotech. Eng., 117(6), 956-966. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(956).   DOI
3 Vallabhan, C.G. and Das, Y.C. (1991b), "Analysis of circular tank foundations", J. Eng. Mech., 117(4), 789-797. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:4(789).   DOI
4 Vallabhan, C.G. and Mustafa, G. (1996), "A new model for the analysis of settlement of drilled piers", Int. J. Numer. Anal. Meth. Geomech., 20(2), 143-152. https://doi.org/10.1002/(SICI)10969853(199602)20:2<143::AID-NAG812>3.0.CO;2-U.   DOI
5 Veletsos, A.S. and Dotson, K.W. (1986), "Impedances of soil layer with disturbed boundary zone", J. Geotech. Eng., 112(3), 363-368. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(363).   DOI
6 Wang, K., Wu, W., Zhang, Z. and Leo, C. J. (2010), "Vertical dynamic response of an inhomogeneous viscoelastic pile", Comput. Geotech., 37(4), 536-544. https://doi.org/10.1016/j.compgeo.2010.03.001.   DOI
7 Wu, W.B., Liu, H., El Naggar, M.H., Mei, G.X. and Jiang, G.S. (2016), "Torsional dynamic response of a pile embedded in layered soil based on the fctitious soil pile model", Comput. Geotech., 80, 190-198. https://doi.org/10.1016/j.compgeo.2016.06.013.   DOI
8 Wu, W.B., Liu, H., Yang, X.Y., Jiang, G.S., El Naggar, M.H., Mei, G.X. and Liang, R.Z. (2020), "New method to calculate apparent phase velocity of open-ended pipe pile", Can. Geotech. J., 57(1), 127-138. https://doi.org/10.1139/cgj-2018-0816.   DOI
9 Wu, W.B., Wang, K.H., Zhang, Z.Q. and Leo, C.J. (2013), "Soilpile interaction in the pile vertical vibration considering true three-dimensional wave effect of soil", Int. J. Numer. Anal. Meth. Geomech., 37(17), 2860-2876. https://doi.org/10.1002/nag.2164.   DOI
10 Gupta, B.K. and Basu, D. (2017), "Analysis of laterally loaded short and long piles in multilayered heterogeneous elastic soil", Soils Found., 57(1), 92-110. https://doi.org/10.1016/j.sandf.2017.01.007.   DOI
11 Gupta, B.K. and Basu, D. (2018), "Applicability of Timoshenko, Euler-Bernoulli and rigid beam theories in analysis of laterally loaded monopiles and piles", Geotechnique, 68(9), 772-785. https://doi.org/10.1680/jgeot.16.P.244.   DOI
12 Gupta, B.K. and Basu, D. (2018), "Dynamic analysis of axially loaded end-bearing pile in a homogeneous viscoelastic soil", Soil Dyn. Earth. Eng., 111, 31-40. https://doi.org/10.1016/j.soildyn.2018.04.019.   DOI
13 Hirai, H. (2014), "Settlement analysis of rectangular piles in nonhomogeneous soil using a Winkler model approach", Int. J. Numer. Anal. Meth. Geomech., 38(12), 1298-1320. https://doi.org/10.1002/nag.227.   DOI
14 Kim, Y.S. and Choi, J.I. (2017), "Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results", Geomech. Eng., 12(2), 239-255. https://doi.org/10.12989/gae.2017.12.2.239.   DOI
15 Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, New Jersey, U.S.A.
16 Kuhlemeyer, R.L. (1979), "Static and dynamic laterally loaded floating piles", J. Geotech. Eng., 105, 289-304.
17 Lee, K. and Xiao, Z. (1999), "A new analytical model for settlement analysis of a single pile in multi-layered soil", Soils Found., 39(5), 131-143. https://doi.org/10.3208/sandf.39.5_131.   DOI
18 Lei, G., Hong, X. and Shi, J. (2005), "Stata-of-the-art review on barrette", China Civ. Eng. J., 38(4), 103-110 (in Chinese). https://doi.org/10.3321/j.issn:1000-131X.2005.04.017.   DOI
19 Yang, D.Y. and Wang, K.H. (2010), "Vertical vibration of pile based on fctitious soil-pile model in inhomogeneous soil", J. Zhejiang Univ., 44(10), 2021-2028 (in Chinese). https://doi.org/10.3785/j.issn.1008-973X.2010.10.030.
20 Lei, G.H., Hong, X. and Shi, J.Y. (2007a), "Approximate threedimensional analysis of rectangular barrette-soil-cap interaction", Can. Geotech. J., 44(7),781-796. https://doi.org/10.1139/t07-017.   DOI
21 Zhang, L.M. (2003), "Behavior of laterally loaded large-section barrettes", J. Geotech. Geoenviron. Eng., 129(7), 639-648. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(639).   DOI
22 Zheng, C., Ding, X., Li, P. and Fu, Q. (2015), "Vertical impedance of an end-bearing pile in viscoelastic soil", Int. J. Numer. Anal. Meth. Geomech., 39(6), 676-684. https://doi.org/10.1002/nag.2324.   DOI
23 Zheng, C., Liu, H., Ding, X. and Kouretzis, G. (2017a), "Resistance of inner soil to the vertical vibration of pipe piles", Soil Dyn. Earthq. Eng., 94, 83-87. https://doi.org/10.1016/j.soildyn.2017.01.002.   DOI
24 Zheng, C., Gan, S., Ding, X. and Luan, L. (2017b), "Dynamic response of a pile embedded in elastic half space subjected to harmonic vertical loading", Acta Mech. Solida Sin., 30(6), 668-673. https://doi.org/10.1016/j.camss.2017.09.006.   DOI
25 Michaelides, O., Gazetas, G., Bouckovalas, G. and Chrysikou, E. (1998), "Approximate non-linear dynamic axial response of piles", Geotechnique, 48(1), 33-53. https://doi.org/10.1680/geot.1998.48.1.33.   DOI
26 Liu, W. and Novak, M. (1994), "Dynamic response of single piles embedded in transversely isotropic layered media", Earthq. Eng. Struct. Dyn., 23(11), 1239-1257. https://doi.org/10.1002/eqe.4290231106.   DOI
27 Maeso, O., Aznarez, J.J. and Garcia, F. (2005), "Dynamic impedances of piles and groups of piles in saturated soils", Comput. Struct., 83(10-11), 769-782. https://doi.org/10.1016/j.compstruc.2004.10.015.   DOI
28 Mamoon, S.M., Kaynia, A.M. and Banerjee, P.K. (1990), "Frequency domain dynamic analysis of piles and pile groups", J. Eng. Mech., 116(10), 2237-2257. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:10(2237).   DOI
29 Millan, M.A. and Dominguez, J. (2009), "Simplified BEM/FEM model for dynamic analysis of structures on piles and pile groups in viscoelastic and poroelastic soils", Eng. Anal. Bound Elem., 33(1), 25-34. https://doi.org/10.1016/j.enganabound.2008.04.003.   DOI
30 Mylonakis, G. (2001), "Elastodynamic model for large-diameter end-bearing shafts", Soils Found., 41(3), 31-44. https://doi.org/10.3208/sandf.41.3_31.   DOI
31 Cui, C.Y., Zhang, S.P., Yang, G. and Li, X.F. (2016), "Vertical vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock", J. Cent. South U., 23(1), 220-232. https://doi.org/10.1007/s11771-016-3065-5.   DOI
32 Ai, Z.Y. and Li, Z.X. (2015), "Dynamic analysis of a laterally loaded pile in a transversely isotropic multilayered half-space", Eng. Anal. Bound Elem., 54, 68-75. https://doi.org/10.1016/j.enganabound.2015.01.008.   DOI
33 Mylonakis, G. and Gazetas, G. (1998), "Settlement and additional internal forces of grouped piles in layered soil", Geotechnique, 48(1), 55-72. https://doi.org/10.1680/geot.1998.48.1.55.   DOI
34 Ng, C.W. and Lei, G.H. (2003), "Performance of long rectangular barrettes in granitic saprolites", J. Geotech. Geoenviron. Eng., 129(8), 685-696. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(685).   DOI
35 Lei, G.H. and Ng, C.W. (2007b), "Rectangular barrettes and circular bored piles in saprolites", Proc. Inst. Civ. Eng. Geotech. Eng., 160(4), 237-242. https://doi.org/10.1680/geng.2007.160.4.237.   DOI
36 Anoyatis, G. and Mylonakis, G. (2012), "Dynamic Winkler modulus for axially loaded piles", Geotechnique, 62(6), 521-536. https://doi.org/10.1680/geot.11.P.052.   DOI
37 Basu, D., Prezzi, M., Salgado, R. and Chakraborty, T. (2008), "Settlement analysis of piles with rectangular cross sections in multi-layered soils", Comput. Geotech., 35(4), 563-575. https://doi.org/10.1016/j.compgeo.2007.09.001.   DOI
38 Cai, Y., Liu, Z., Li, T., Yu, J. and Wang, N. (2020), "Vertical dynamic response of a pile embedded in radially inhomogeneous soil based on fictitious soil pile model", Soil Dyn. Earthq. Eng., 132, 106038. https://doi.org/10.1016/j.soildyn.2020.106038.   DOI
39 Cui, C.Y., Meng, K., Wu, Y.J., Chapman, D. and Liang, Z.M. (2018a), "Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation", Geomech. Eng., 16(6), 609-618. https://doi.org/10.12989/gae.2018.16.6.609.   DOI
40 Cui, C., Zhang, S., Chapman, D. and Meng, K. (2018b), "Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads", Geomech. Eng., 15(2), 793-803. https://doi.org/10.12989/gae.2018.15.2.793.   DOI
41 Randolph, M.F. (1981), "The response of flexible piles to lateral loading", Geotechnique, 31(2), 247-259. https://doi.org/10.1680/geot.1981.31.2.247.   DOI
42 Nogami, T. and Konagai, K. (1987), "Dynamic response of vertically loaded nonlinear pile foundations", J. Geotech. Eng., 113(2), 147-160. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:2(147).   DOI
43 Padron, L.A., Aznarez, J.J. and Maeso, O. (2007), "BEM-FEM coupling model for the dynamic analysis of piles and pile groups", Eng. Anal. Bound Elem., 31(6), 473-484. https://doi.org/10.1016/j.enganabound.2006.11.001.   DOI
44 Poulos, H.G. (1989), "Pile behaviour-theory and application", Geotechnique, 39(3), 365-415. https://doi.org/10.1680/geot.1989.39.3.365.   DOI
45 Seo, H., Basu, D., Prezzi, M. and Salgado, R. (2009), "Loadsettlement response of rectangular and circular piles in multilayered soil", J. Geotech. Geoenviron. Eng., 135(3), 420-430. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(420).   DOI
46 Sun, K. (1994a), "Laterally loaded piles in elastic media", J. Geotech. Eng., 120(8), 1324-1344. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1324).   DOI
47 Ukritchon, B. and Keawsawasvong, S. (2018), "Undrained lateral capacity of rectangular piles under a general loading direction and full flow mechanism", KSCE J. Civ. Eng., 22(7), 2256-2265. https://doi.org/10.1007/s12205-017-0062-7.   DOI
48 Dym, C.L. and Shames, I.H. (1973), Solid Mechanics: A Variational Approach, McGraw-Hill, New York, U.S.A.
49 Sun, K. (1994b), "A numerical method for laterally loaded piles", Comput. Geotech., 16(4), 263-289. https://doi.org/10.1016/0266-352X(94)90011-6.   DOI
50 Tehrani, F.S., Salgado, R. and Prezzi, M. (2016), "Analysis of axial loading of pile groups in multilayered elastic soil", Int. J. Geomech., 16(2), 04015063. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000540.   DOI
51 Ng, C.W., Rigby, D.B., Ng, S.W. and Lei, G.H. (2000), "Field studies of well-instrumented barrette in Hong Kong", J. Geotech. Geoenviron. Eng., 126(1), 60-73. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(60).   DOI
52 Fellenius, B.H., Altaee, A., Kulesza, R. and Hayes, J. (1999), "Ocell testing and FE analysis of 28-m-deep barrette in Manila, Philippines", J. Geotech. Geoenviron. Eng., 125(7), 566-575. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(566).   DOI
53 El Gendy, M., Ibrahim, H. and El Arabi, I. (2018), "Modeling single barrettes as elastic support by CCT", Malaysian J. Civ. Eng., 30(2),296-312. https://doi.org/10.11113/mjce.v30n2.481.
54 El Gendy, M., Ibrahim, H. and El Arabi, I. (2019), "Composed coefficient technique for barrette group", Malaysian J. Civ. Eng., 31(1), 23-33. https://doi.org/10.11113/mjce.v31n1.510.
55 El Wakil, A.Z. and Nazir, A.K. (2013), "Behavior of laterally loaded small scale barrettes in sand", Ain Shams Eng. J., 4(3), 343-350. http://doi.org/10.1016/j.asej.2012.10.011.   DOI
56 Gan, S., Zheng, C., Kouretzis, G. and Ding, X. (2020), "Vertical vibration of piles in viscoelastic non-uniform soil overlying a rigid base", Acta Geotech., 15, 1321-1330. https://doi.org/10.1007/s11440-019-00833-7.   DOI
57 Guo, W.D. and Lee, F.H. (2001), "Load transfer approach for laterally loaded piles", Int. J. Numer. Anal. Meth. Geomech., 25(11), 1101-1129. https://doi.org/10.1002/nag.169.   DOI
58 Gupta, B.K. and Basu, D. (2016a), "Analysis of laterally loaded rigid monopiles and poles in multilayered linearly varying soil", Comput. Geotech., 72, 114-125. https://doi.org/10.1016/j.compgeo.2015.11.008.   DOI
59 Gupta, B.K. and Basu, D. (2016b), "Response of laterally loaded rigid monopiles and poles in multi-layered elastic soil", Can. Geotech. J., 53(8), 1281-1292. https://doi.org/10.1139/cgj-2015-0520.   DOI
60 Das, Y.C. and Sargand, S.M. (1999), "Forced vibrations of laterally loaded piles", Int. J. Solids Struct., 36(33), 4975-4989. https://doi.org/10.1016/S0020-7683(98)00231-5.   DOI