• Title/Summary/Keyword: Banach operator type k

Search Result 12, Processing Time 0.016 seconds

GENERALIZED CONDITIONS FOR THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS ON BANACH SPACES WITH A CONVERGENCE STRUCTURE AND APPLICATIONS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.433-448
    • /
    • 1998
  • In this study we use inexact Newton-like methods to find solutions of nonlinear operator equations on Banach spaces with a convergence structure. Our technique involves the introduction of a generalized norm as an operator from a linear space into a par-tially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover this approach allows us to derive from the same theorem on the one hand semi-local results of kantorovich-type and on the other hand 2global results based on monotonicity considerations. By imposing very general Lipschitz-like conditions on the operators involved on the other hand by choosing our operators appropriately we can find sharper error bounds on the distances involved than before. Furthermore we show that special cases of our results reduce to the corresponding ones already in the literature. Finally our results are used to solve integral equations that cannot be solved with existing methods.

EXISTENCE OF SOLUTION OF NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS IN GENERAL BANACH SPACES

  • Jeong, Jin-Gyo;Shin, Ki-Yeon
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1003-1013
    • /
    • 1996
  • The existence of a bounded generalized solution on the real line for a nonlinear functional evolution problem of the type $$ (FDE) x'(t) + A(t,x_t)x(t) \ni 0, t \in R $$ in a general Banach spaces is considered. It is shown that (FDE) has a bounded generalized solution on the whole real line with well-known Crandall and Pazy's result and recent results of the functional differential equations involving the operator A(t).

  • PDF

ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

  • Jeong, Jin-Gyo;Shin, Ki-Yeon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.501-503
    • /
    • 1997
  • The existence of a unique local generalized solution for the abstract functional evolution problem of the type $$ (FDE:\phi) x'(t) + A(t, x_t)x(t) \ni G(t, x_t), t \in [0, T], x_0 = \phi $$ in a general Banach spaces is considered. It is shown that $(FDE:\phi)$ could be considered with well-known fixed point theory and recent results for the functional differential equations involving the operator A(t).

  • PDF

A SYSTEM OF VARIATIONAL INCLUSIONS IN BANACH SPACES

  • Liu, Zeqing;Zhao, Liangshi;Hwang, Hong-Taek;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.681-691
    • /
    • 2010
  • A system of variational inclusions with (A, ${\eta}$, m)-accretive operators in real q-uniformly smooth Banach spaces is introduced. Using the resolvent operator technique associated with (A, ${\eta}$, m)-accretive operators, we prove the existence and uniqueness of solutions for this system of variational inclusions and propose a Mann type iterative algorithm for approximating the unique solution for the system of variational inclusions.

APPROXIMATING SOLUTIONS OF EQUATIONS BY COMBINING NEWTON-LIKE METHODS

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.35-45
    • /
    • 2008
  • In cases sufficient conditions for the semilocal convergence of Newtonlike methods are violated, we start with a modified Newton-like method (whose weaker convergence conditions hold) until we stop at a certain finite step. Then using as a starting guess the point found above we show convergence of the Newtonlike method to a locally unique solution of a nonlinear operator equation in a Banach space setting. A numerical example is also provided.

  • PDF

CONCERNING THE RADIUS OF CONVERGENCE OF NEWTON'S METHOD AND APPLICATIONS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.685-696
    • /
    • 1999
  • We present local and semilocal convergence results for New-ton's method in a Banach space setting. In particular using Lipschitz-type assumptions on the second Frechet-derivative we find results con-cerning the radius of convergence of Newton's method. Such results are useful in the context of predictor-corrector continuation procedures. Finally we provide numerical examples to show that our results can ap-ply where earlier ones using Lipschitz assumption on the first Frechet-derivative fail.

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

ITERATIVE SOLUTIONS TO NONLINEAR EQUATIONS OF THE ACCRETIVE TYPE IN BANACH SPACES

  • Liu, Zeqing;Zhang, Lili;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.265-273
    • /
    • 2001
  • In this paper, we prove that under certain conditions the Ishikawa iterative method with errors converges strongly to the unique solution of the nonlinear strongly accretive operator equation Tx=f. Related results deal with the solution of the equation x+Tx=f. Our results extend and improve the corresponding results of Liu, Childume, Childume-Osilike, Tan-Xu, Deng, Deng-Ding and others.

  • PDF

SCHATTEN CLASSES OF MATRICES IN A GENERALIZED B(l2)

  • Rakbud, Jitti;Chaisuriya, Pachara
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.29-40
    • /
    • 2010
  • In this paper, we study a generalization of the Banach space B($l_2$) of all bounded linear operators on $l_2$. Over this space, we present some reasonable ways to define Schatten-type classes which are generalizations of the classical Schatten classes of compact operators on $l_2$.