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Abstract

In this paper, we introduce and formulate the definitions of Banach operatok e Banach operator pair on intuition-
istic fuzzy metric space. Thereafter we prove some properties and theorems on intuitionistic fuzzy metric space.
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1. Introduction Definition 2.1. ([1])The5—tuple (X, M, N, x,¢) is said to
be an intuitionistic fuzzy metric space X is an arbitrary

Park et.al.[4] defined the intuitionistic fuzzy metric S€L* IS a continuoug—norm,o is a continuous—conorm
space, and we studied many contents on intuitionistic fuz?f‘d M, N are fuzzy sets oiX? x (0, 00) satisfying the
metric space. Also, many authors([1],[3],[4] etc) studiedo!lowing condltlons foralle,y,z € X,
some definitions and theories on intuitionistic fuzzy metric (@M (z,y,t) >
space. (O)M (z,y,t) = 1 if and only if z = y,

In this paper, we first introduce and formulate the defi- ©M(z,y,t) = M(y,z,1),
nitions of Banach operator tygeand Banach operator pair (DM (z,y,t) * M(y,z,5) < M(x,2,t +5),
on intuitionistic fuzzy metric space. Thereafter we prove (€)M (z,y,-) : (0,00) — (0,1] is continuous,
some properties on intuitionistic fuzzy metric space. These ()N (z,y,t) >0,
results partially improve and generalize [6]. (9)N(z,y,t) = 0ifand only if z = y,

(MN(z,y,t) = N(y,z,1),
L . ()N(z,y,t) o N(y,z,s) = N(z,z,t+s),
2. Preliminaries and Properties ()N (z,y,-) : (0,00) — (0,1] is continuous.

Note that{ M, N) is called an intuitionistic fuzzy metric
on X. The functionsM (z,y,t) and N (z,y, t) denote the
gegree of nearness and the degree of non-nearness between
2 andy with respect td, respectively.

Throughout this papelN denote the set of all positive
integers. Now, we begin with some definitions, propertie
in intuitionistic fuzzy metric space as following:

Let us recall(see [S]) that a continuotisnorm is an | emma 2.2. ([3])Let X be an intuitionistic fuzzy metric

operations : [0,1] x [0,1] — [0,1] which satisfies the gpace. If there exists a numbere (0,1) such that for all
following conditions: (a) is commutative and associative, ;. o ¢ x andt > 0,

(b)+ is continuous, (@)1 = aforalla € [0, 1], (d)a*xb <
cxdwhenever < candb < d (a,b,c,d € [0,1]). Also,a  Nf(z,y, kt) > M(z,y,t), N(z,y,kt) < N(z,y,t),
continuoust—conorm is an operation : [0, 1] x [0,1] —
[0, 1] which satisfies the following conditions: ¢als com-  thenz = y.
mutative and associative, ¢bis continuous, (@) ¢ 0 = a
foralla € [0,1], (d)acb > codwhenever < candb < d  Definition 2.3. Let X be an intuitionistic fuzzy metric
(a,b,c,d € [0,1]). space.
Also, let us recall (see [2]) that the following conditions  (&)A self mappingl’ on X is said to be f-contraction if
are satisfied: (a)For any, r, € (0,1) with r; > 7y, there there exists a real number< k < 1 such that
existrs,r4 € (0,1) such thaty xr3 > ro andryore < rq;
(b)For anyrs € (0,1), there existg, 77 € (0,1) such that M(Tx, Ty, kt) > M(fz, fy,t),
re * rg > r5 andry o vy < rs. N(Txz, Ty, kt) < N(fxz, fy,t)
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forall z,y € X. If & = 1, thenT is said to be f- Proof. Let T and f be two continuous self mappings of
nonexpansive. an intuitionistic fuzzy metric spac&. If (T, f) is a Ba-
(b)A mappingT on X is said to be asymptotically f- nach operator pair, and for eadh,,} C X such that
nonexpansive if there exists a sequefigg} of real num- lim, o 2, = lim, o Tz, = z, then fTz, = Tz,
bers withy,, > 1 andlim,, ., 1, = 1 such that from Definition 2.5. Also, By continuity of, f, Proposi-

ion 2. = fT
M(T"2, T"y, pnt) > M(fz, fy,t), tion 2.6 andl’fz, = fTwn,

N(T"z, T"y, pnt) < N(fx, fy,t)
lim M(T fx,, Tx,, kt)

forallz,y ¢ Xandn=1,2,3,--- ,00. n—00
(c)T is said to be uniformly asymptotically regular on = lim M (T fan, Tf,,kt)

X if for eachr > 0, there existdN(e) = N such that > lim M(fan, fam,t) = 1,

m n—+1 . n—oo

M(T"2, Ty, pnt) > 1 =, lim N(Tfxn, Tan, kt)

N(T 2, T" y, pnt) < r noee

= lim N(Tfx,,T fx,,kt)

foralln > N andx € X. oo
(d)Two self mappingd” andf on X are said to be com- < lim N(fun, fon,t) =0.

muting if I'fz = fTx forall x € X.

or

Definition 2.4. Let T be a self mapping of an intuitionistic

Lt:czt%;ei;nc spac&X . ThenT is called a Banach operator nhj{}o M(T . fTam, kt)
M(T?z, Ta, kt) > M(Tx,z,t), = Jim M(Tfzn, T fan, kt)
N(T?z, Tz, kt) < N(Tz,z,t) > nli_{TOlOM(fUCmffEnat) =1

for somek > 0 and for allz € X. Jim N(Tfan, fTen, kt)

Definition 2.5. Let T and f be two self mappings on in- = nlin;o N(Tfx,, T fx,, kt)

tuitionistic fuzzy metric spacé&’. Then(T, f) is a Banach

< i =0.
operator pair if any one of the following conditions is sat- - nlL»H;o N{(fzn, fon,t) =0

isfied
@I (F(f)) C F(f)(the set of fixed points of),
(b)fTx = Tx for eachz € F(f), Conversely, for eacliz,} € X such thalim,, . z,
(©)fTx =Tfxforx € F(f), = lim,, oo Tx,, = x, if

(AM(Tfx, fx, kt) 2 M(fz,2,t), N(Tfz, fz, kt) <
N(fz,z,t) for somek > 0.
N ) lim M(T fx,, fTx,, kt) =1
Proposition 2.6. If 7" and f are two self mappings of an nee
intuitionistic fuzzy metric spac&’, then(T, f) is a Banach and - lim N(Tfzn, fTa,, kt) =0,
operator pair if and only if” and f commute onF'( f).

Proof. This proposition is satisfied from the Definition then from Definition 2.5,(T, f)

is a Banach operator
2.5. p

pair. O
Proposition 2.7. If T'and f are two continuous self map-
pings of an intuitionistic fuzzy metric spacé, then(T, f)
is a Banach operator pair if and only if for eagh,} ¢ X
such thatim,, ¢ @, = lim,,_,oc Tz, = z, it follows that

3. Some Results

lim M(Tfzn, T, kt) = 1 Now, we prove some fixed point theorems satisfying
n—oo some conditions on intuitionistic fuzzy metric space.
and lim N(Tfx,, Tx,, kt) =0
n—oo
or
Theorem 3.1. Let Y be a nonempty closed subset of an
Jim M(T fap, fTen, kt) =1 intuitionistic fuzzy metric spac& with t « ¢t > t, tot < ¢
. forallt € [0,1) and letf,T : Y — Y be commuting
d lim N(Tfx,, fTr,, kt) = 0. L '
eI (Tfn, JTn, kt) self mappings orit” — {¢} for someq € X such that

138



Some Properties and Theorems on Intuitionistic Fuzzy Metric Space

T(Y — {q}) c f(Y)— {¢}. Suppose that there exists Taking the limit as: — oo in above equation, we obtain

k € (0,1) such that

M(Tx, Ty, kt)

> min{M(fz, fy,t), M(fz,Tz,t), M(fy,Ty,1),
M(fz,Ty,t) « M(fy, Tz, )}, (1)

N(Txz, Ty, kt)

< max{N(fz, fy,t), N(fz, Tz, 1), N(fy, Ty,1),
N(fx,Ty,t)o N(fy,Tx,t)}

for all z,y € Y.

pointinY.

Proof. Letzy € Y. SinceT (Y — {q}) C f(Y) — {q¢}.
define a sequencgr,} C Y as fx,, = Tx,_; for each
n > 1. Then we have

M(fxnt1, fan, kt)

= M(Txy,, Txpni, kt)

> min{ M (fan, fen_1,t), M(fx,, Te,,t),
M(fzn, Txn_1,t) * M(fzpn_1,TTn,t),
M(fxp_1,Ten_1,t)}

> min{ M (fzn, frn—1,t), M(fTn, fTni1,t),
M(fxn_1, fxn,t)« M(fx,, fTai1,t)}

> M(fxn, fro_1,t),

N(fxps1, fxn, kt)

= N(T2p, Txpi1, kt)

<max{N(fzn, frn_1,t), N(fTn, Txn,t),
N(fxn, Txp—1,t) o N(frp_1,Txn,t),
N(frp—1,Txp_1,t)}

<max{N(fen, frn-1,t), N(fTn, fTni1,t),
N(frp-1, fon,t) o N(fn, frai1,t)}

< N(fn, frn—1,t)

Further, if T is continuous and
(T(Y — {q}) is complete, thed'(f) N F(T) has a unique

My, Ty, kt)

> min{M (y, Ty, t), M (y,y,t), M(Ty, Ty,1),
M(y, Ty, t) * M(Ty,y, 1)},

N(y, Ty, kt)

<max{N(y,Ty,t),N(y,y,t), N(Ty, Ty, 1),
N(y,Ty,t) o N(Ty,y,t)}.

Thus sincea x a > a anda o a < a for all a €
0,1], M(y,Ty,kt) > M(y,Ty.t), N(y,Ty,kt) <
N(y,Ty,t). Thus by Lemma 2.2y = Ty € T(Y) and
T(Y) C f(Y), there exists € Y such thayy = Ty = fz.
Now, we prove thaf’z = fz. Since

M(TTzx,, Tz, kt)

> min{ M (fTxn, fz,t), M(fTan, TTx,,t),
M(fTx,,Tz,t)« M(TTxy, fz,1),
M(f2, T2 1)),

N(TTz,, Tz, kt)

<max{N(fTxz, fz,t), N(fTxn, TTx,,t),
N(fTz,,Tz,t)o N(TTx,, fz,t),
N(fz,Tzt)}.

Taking the limit as» — oo in above equation, we obtain

M(Ty, Tz, kt)

> min{M(Ty, fz,t), M(Ty,Tz,t), M(fz,Tz,t),
M(Ty,Tz,t)« M(fz,Ty,t)},

N(Ty, Tz, kt)

<max{N(Ty, fz,t), N(Ty,Tz,t), N(fz,Tz,1),
N(Ty,Tz,t)o N(fz,Ty,t)}.

Sincey = Ty anda*a > a andaca < aforalla € [0,1],

for all n € N. Therefore{z,} is a Cauchy sequence therefore

in Y. So, {Tx,} is a Cauchy sequence il and since
T(Y — {q}) is complete]im,,_,o. Tx,, =y € Y and con-
sequentlylim,, ., fz, = y. SinceT and f are commut-
ingonY — {q}, Tfx, = fTxz,. AsT is continuous,
lim, oo [Tz, =lim, .o T fx, =Ty. Now
M(Tz,,, TTx,, kt)
M(fxn, TTxy, t) * M(fTxn, Txp,t),
M(fTx,, TTx,,t)},
N(Tz,, TTx,, kt)
< max{N(fxn, fTxn,t), N(frn, Te,,t),
N(fxn, TTxn,t) o N(fTxy, Tan,t),
N(fTayn, TTxy,t)}.

M(y, Tz kt) > M(y,Tz,t), N(y,Tzkt) < N(y,Tz,t).
From Lemma 2.2y = Tz. Hencey =Tz = Ty = f=z.
Also, sinceT fz = fTz,y = Ty = fy. Thatis,yis a
unique point ofF'(f) N F/(T'). O

Corollary 3.2. Let T and f be two self mappings of a
nonempty closed subsgt of an intuitionistic fuzzy met-
ric spaceX witht«t > ¢, tot < tforall ¢t € [0,1] such
thatT(Y — {q}) is complete for somg € X. Suppose
that (7', f) is a Banach operator pair dn — {¢} satisfy-
ing inequality (1) for allz,y € Y andk € [0,1). If fis
continuous and?'(f) is nonempty, then there is a unique
common fixed point of" and f.
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Proof. SinceF(f) is the fixed point set of, f(F(f)) = [4] Park, J.S., Kwun, Y.C., Park, J.H., “A fixed point
F(f). Also, since(T, f) is a Banach operator pair on theorem in the intuitionistic fuzzy metric spaces,”
Y —{q¢}, T(F(f) —{q}) C F(f) — {q} andT(F(f)) C F.J.M.S, vol. 16, no. 2, pp. 137-149, 2005.

F(F(f)). Also, T(F(f) — {q}) is complete. Furthermore,
since(T', f) satisfies inequality (1) for alt, y € Y and by [5] Schweizer, B., Sklar, A., “Statistical metric spaces,”

Theorem 3.17 and f have a unique common fixed point Pacific J. Math, vol. 10, pp. 314-334, 1960.

in F(f). O

[6] Vijayaraju, P., Hemavathy, R., “Common fixed point
theorem for generalized asymptotically nonexpan-
sive noncommuting mappings in a nonstarshaped do-
main,” JP J. fixed point Theory & Applvol. 3, no. 2,
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