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Abstract

In this paper, we introduce and formulate the definitions of Banach operator typek and Banach operator pair on intuition-
istic fuzzy metric space. Thereafter we prove some properties and theorems on intuitionistic fuzzy metric space.
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1. Introduction

Park et.al.[4] defined the intuitionistic fuzzy metric
space, and we studied many contents on intuitionistic fuzzy
metric space. Also, many authors([1],[3],[4] etc) studied
some definitions and theories on intuitionistic fuzzy metric
space.

In this paper, we first introduce and formulate the defi-
nitions of Banach operator typek and Banach operator pair
on intuitionistic fuzzy metric space. Thereafter we prove
some properties on intuitionistic fuzzy metric space. These
results partially improve and generalize [6].

2. Preliminaries and Properties

Throughout this paper,N denote the set of all positive
integers. Now, we begin with some definitions, properties
in intuitionistic fuzzy metric space as following:

Let us recall(see [5]) that a continuoust−norm is an
operation∗ : [0, 1] × [0, 1] → [0, 1] which satisfies the
following conditions: (a)∗ is commutative and associative,
(b)∗ is continuous, (c)a∗1 = a for all a ∈ [0, 1], (d)a∗ b ≤
c ∗ d whenevera ≤ c andb ≤ d (a, b, c, d ∈ [0, 1]). Also, a
continuoust−conorm is an operation¦ : [0, 1] × [0, 1] →
[0, 1] which satisfies the following conditions: (a)¦ is com-
mutative and associative, (b)¦ is continuous, (c)a ¦ 0 = a
for all a ∈ [0, 1], (d)a¦b ≥ c¦d whenevera ≤ c andb ≤ d
(a, b, c, d ∈ [0, 1]).

Also, let us recall (see [2]) that the following conditions
are satisfied: (a)For anyr1, r2 ∈ (0, 1) with r1 > r2, there
existr3, r4 ∈ (0, 1) such thatr1 ∗r3 ≥ r2 andr4 ¦r2 ≤ r1;
(b)For anyr5 ∈ (0, 1), there existr6, r7 ∈ (0, 1) such that
r6 ∗ r6 ≥ r5 andr7 ¦ r7 ≤ r5.

Definition 2.1. ([1])The5−tuple(X,M,N, ∗, ¦) is said to
be an intuitionistic fuzzy metric space ifX is an arbitrary
set,∗ is a continuoust−norm,¦ is a continuoust−conorm
and M, N are fuzzy sets onX2 × (0,∞) satisfying the
following conditions; for allx, y, z ∈ X,

(a)M(x, y, t) > 0,
(b)M(x, y, t) = 1 if and only if x = y,
(c)M(x, y, t) = M(y, x, t),
(d)M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),
(e)M(x, y, ·) : (0,∞) → (0, 1] is continuous,
(f)N(x, y, t) > 0,
(g)N(x, y, t) = 0 if and only if x = y,
(h)N(x, y, t) = N(y, x, t),
(i)N(x, y, t) ¦N(y, z, s) ≥ N(x, z, t + s),
(j)N(x, y, ·) : (0,∞) → (0, 1] is continuous.
Note that(M,N) is called an intuitionistic fuzzy metric

on X. The functionsM(x, y, t) andN(x, y, t) denote the
degree of nearness and the degree of non-nearness between
x andy with respect tot, respectively.

Lemma 2.2. ([3])Let X be an intuitionistic fuzzy metric
space. If there exists a numberk ∈ (0, 1) such that for all
x, y ∈ X andt > 0,

M(x, y, kt) ≥ M(x, y, t), N(x, y, kt) ≤ N(x, y, t),

thenx = y.

Definition 2.3. Let X be an intuitionistic fuzzy metric
space.

(a)A self mappingT onX is said to be f-contraction if
there exists a real number0 < k ≤ 1 such that

M(Tx, Ty, kt) ≥ M(fx, fy, t),
N(Tx, Ty, kt) ≤ N(fx, fy, t)
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for all x, y ∈ X. If k = 1, then T is said to be f-
nonexpansive.

(b)A mappingT on X is said to be asymptotically f-
nonexpansive if there exists a sequence{µn} of real num-
bers withµn ≥ 1 andlimn→∞ µn = 1 such that

M(Tnx, Tny, µnt) ≥ M(fx, fy, t),
N(Tnx, Tny, µnt) ≤ N(fx, fy, t)

for all x, y ∈ X andn = 1, 2, 3, · · · ,∞.
(c)T is said to be uniformly asymptotically regular on

X if for eachr > 0, there existsN(ε) = N such that

M(Tnx, Tn+1y, µnt) > 1− r,

N(Tnx, Tn+1y, µnt) < r

for all n ≥ N andx ∈ X.
(d)Two self mappingsT andf onX are said to be com-

muting if Tfx = fTx for all x ∈ X.

Definition 2.4. Let T be a self mapping of an intuitionistic
fuzzy metric spaceX. ThenT is called a Banach operator
of typek if

M(T 2x, Tx, kt) ≥ M(Tx, x, t),
N(T 2x, Tx, kt) ≤ N(Tx, x, t)

for somek ≥ 0 and for allx ∈ X.

Definition 2.5. Let T andf be two self mappings on in-
tuitionistic fuzzy metric spaceX. Then(T, f) is a Banach
operator pair if any one of the following conditions is sat-
isfied

(a)T (F (f)) ⊆ F (f)(the set of fixed points off ),
(b)fTx = Tx for eachx ∈ F (f),
(c)fTx = Tfx for x ∈ F (f),
(d)M(Tfx, fx, kt) ≥ M(fx, x, t), N(Tfx, fx, kt) ≤

N(fx, x, t) for somek ≥ 0.

Proposition 2.6. If T andf are two self mappings of an
intuitionistic fuzzy metric spaceX, then(T, f) is a Banach
operator pair if and only ifT andf commute onF (f).

Proof. This proposition is satisfied from the Definition
2.5.

Proposition 2.7. If T andf are two continuous self map-
pings of an intuitionistic fuzzy metric spaceX, then(T, f)
is a Banach operator pair if and only if for each{xn} ⊂ X
such thatlimn→∞ xn = limn→∞ Txn = x, it follows that

lim
n→∞

M(Tfxn, Txn, kt) = 1

and lim
n→∞

N(Tfxn, Txn, kt) = 0

or

lim
n→∞

M(Tfxn, fTxn, kt) = 1

and lim
n→∞

N(Tfxn, fTxn, kt) = 0.

Proof. Let T and f be two continuous self mappings of
an intuitionistic fuzzy metric spaceX. If (T, f) is a Ba-
nach operator pair, and for each{xn} ⊂ X such that
limn→∞ xn = limn→∞ Txn = x, thenfTxn = Txn

from Definition 2.5. Also, By continuity ofT, f , Proposi-
tion 2.6 andTfxn = fTxn,

lim
n→∞

M(Tfxn, Txn, kt)

= lim
n→∞

M(Tfxn, T fxn, kt)

≥ lim
n→∞

M(fxn, fxn, t) = 1,

lim
n→∞

N(Tfxn, Txn, kt)

= lim
n→∞

N(Tfxn, T fxn, kt)

≤ lim
n→∞

N(fxn, fxn, t) = 0.

or

lim
n→∞

M(Tfxn, fTxn, kt)

= lim
n→∞

M(Tfxn, T fxn, kt)

≥ lim
n→∞

M(fxn, fxn, t) = 1,

lim
n→∞

N(Tfxn, fTxn, kt)

= lim
n→∞

N(Tfxn, T fxn, kt)

≤ lim
n→∞

N(fxn, fxn, t) = 0.

Conversely, for each{xn} ⊂ X such thatlimn→∞ xn

= limn→∞ Txn = x, if

lim
n→∞

M(Tfxn, fTxn, kt) = 1

and lim
n→∞

N(Tfxn, fTxn, kt) = 0,

then from Definition 2.5,(T, f) is a Banach operator
pair.

3. Some Results

Now, we prove some fixed point theorems satisfying
some conditions on intuitionistic fuzzy metric space.

Theorem 3.1. Let Y be a nonempty closed subset of an
intuitionistic fuzzy metric spaceX with t ∗ t ≥ t, t ¦ t ≤ t
for all t ∈ [0, 1] and letf, T : Y → Y be commuting
self mappings onY − {q} for someq ∈ X such that
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T (Y − {q}) ⊂ f(Y ) − {q}. Suppose that there exists
k ∈ (0, 1) such that

M(Tx, Ty, kt)
≥ min{M(fx, fy, t),M(fx, Tx, t),M(fy, Ty, t),

M(fx, Ty, t) ∗M(fy, Tx, t)}, (1)

N(Tx, Ty, kt)
≤ max{N(fx, fy, t), N(fx, Tx, t), N(fy, Ty, t),

N(fx, Ty, t) ¦N(fy, Tx, t)}
for all x, y ∈ Y . Further, if T is continuous and
(T (Y − {q}) is complete, thenF (f) ∩ F (T ) has a unique
point inY .

Proof. Let x0 ∈ Y . SinceT (Y − {q}) ⊂ f(Y ) − {q},
define a sequence{xn} ⊂ Y asfxn = Txn−1 for each
n ≥ 1. Then we have

M(fxn+1, fxn, kt)
= M(Txn, Txn+1, kt)
≥ min{M(fxn, fxn−1, t),M(fxn, Txn, t),

M(fxn, Txn−1, t) ∗M(fxn−1, Txn, t),
M(fxn−1, Txn−1, t)}

≥ min{M(fxn, fxn−1, t),M(fxn, fxn+1, t),
M(fxn−1, fxn, t) ∗M(fxn, fxn+1, t)}

≥ M(fxn, fxn−1, t),
N(fxn+1, fxn, kt)
= N(Txn, Txn+1, kt)
≤ max{N(fxn, fxn−1, t), N(fxn, Txn, t),

N(fxn, Txn−1, t) ¦N(fxn−1, Txn, t),
N(fxn−1, Txn−1, t)}

≤ max{N(fxn, fxn−1, t), N(fxn, fxn+1, t),
N(fxn−1, fxn, t) ¦N(fxn, fxn+1, t)}

≤ N(fxn, fxn−1, t)

for all n ∈ N. Therefore{xn} is a Cauchy sequence
in Y . So, {Txn} is a Cauchy sequence inY and since
T (Y − {q}) is complete,limn→∞ Txn = y ∈ Y and con-
sequently,limn→∞ fxn = y. SinceT andf are commut-
ing on Y − {q}, Tfxn = fTxn. As T is continuous,
limn→∞ fTxn = limn→∞ Tfxn = Ty. Now

M(Txn, TTxn, kt)
≥ min{M(fxn, fTxn, t),M(fxn, Txn, t),

M(fxn, TTxn, t) ∗M(fTxn, Txn, t),
M(fTxn, TTxn, t)},

N(Txn, TTxn, kt)
≤ max{N(fxn, fTxn, t), N(fxn, Txn, t),

N(fxn, TTxn, t) ¦N(fTxn, Txn, t),
N(fTxn, TTxn, t)}.

Taking the limit asn →∞ in above equation, we obtain

M(y, Ty, kt)
≥ min{M(y, Ty, t),M(y, y, t),M(Ty, Ty, t),

M(y, Ty, t) ∗M(Ty, y, t)},
N(y, Ty, kt)
≤ max{N(y, Ty, t), N(y, y, t), N(Ty, Ty, t),

N(y, Ty, t) ¦N(Ty, y, t)}.

Thus sincea ∗ a ≥ a and a ¦ a ≤ a for all a ∈
[0, 1], M(y, Ty, kt) ≥ M(y, Ty, t), N(y, Ty, kt) ≤
N(y, Ty, t). Thus by Lemma 2.2,y = Ty ∈ T (Y ) and
T (Y ) ⊂ f(Y ), there existsz ∈ Y such thaty = Ty = fz.
Now, we prove thatTz = fz. Since

M(TTxn, T z, kt)
≥ min{M(fTxn, fz, t),M(fTxn, TTxn, t),

M(fTxn, T z, t) ∗M(TTxn, fz, t),
M(fz, Tz, t)},

N(TTxn, T z, kt)
≤ max{N(fTxn, fz, t), N(fTxn, TTxn, t),

N(fTxn, T z, t) ¦N(TTxn, fz, t),
N(fz, Tz, t)}.

Taking the limit asn →∞ in above equation, we obtain

M(Ty, Tz, kt)
≥ min{M(Ty, fz, t),M(Ty, Tz, t),M(fz, Tz, t),

M(Ty, Tz, t) ∗M(fz, Ty, t)},
N(Ty, Tz, kt)
≤ max{N(Ty, fz, t), N(Ty, Tz, t), N(fz, Tz, t),

N(Ty, Tz, t) ¦N(fz, Ty, t)}.

Sincey = Ty anda∗a ≥ a anda¦a ≤ a for all a ∈ [0, 1],
therefore

M(y, Tz, kt) ≥ M(y, Tz, t), N(y, Tz, kt) ≤ N(y, Tz, t).

From Lemma 2.2,y = Tz. Hencey = Tz = Ty = fz.
Also, sinceTfz = fTz, y = Ty = fy. That is,y is a
unique point ofF (f) ∩ F (T ).

Corollary 3.2. Let T and f be two self mappings of a
nonempty closed subsetY of an intuitionistic fuzzy met-
ric spaceX with t ∗ t ≥ t, t ¦ t ≤ t for all t ∈ [0, 1] such
that T (Y − {q}) is complete for someq ∈ X. Suppose
that (T, f) is a Banach operator pair onY − {q} satisfy-
ing inequality (1) for allx, y ∈ Y andk ∈ [0, 1). If f is
continuous andF (f) is nonempty, then there is a unique
common fixed point ofT andf .
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Proof. SinceF (f) is the fixed point set off , f(F (f)) =
F (f). Also, since(T, f) is a Banach operator pair on
Y − {q}, T (F (f) − {q}) ⊆ F (f) − {q} andT (F (f)) ⊆
f(F (f)). Also,T (F (f)− {q}) is complete. Furthermore,
since(T, f) satisfies inequality (1) for allx, y ∈ Y and by
Theorem 3.1,T andf have a unique common fixed pointz
in F (f).
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