DOI QR코드

DOI QR Code

SCHATTEN CLASSES OF MATRICES IN A GENERALIZED B(l2)

  • Rakbud, Jitti (Department of Mathematics Faculty of Science Silpakorn University) ;
  • Chaisuriya, Pachara (Department of Mathematics Faculty of Science Mahidol University)
  • Published : 2010.01.01

Abstract

In this paper, we study a generalization of the Banach space B($l_2$) of all bounded linear operators on $l_2$. Over this space, we present some reasonable ways to define Schatten-type classes which are generalizations of the classical Schatten classes of compact operators on $l_2$.

Keywords

References

  1. G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), no. 3, 603-63 https://doi.org/10.1215/S0012-7094-77-04426-X
  2. K. R. Davidson, Nest Algebras, Longman Scientific and Technical, Essex, UK, 1988
  3. J. Dixmier, Les fonctionnelles lin'earies sur l'ensemble des op´erateurs born´es d'un espace de Hilbert, Ann. of Math. (2) 51 (1950). 387-408 https://doi.org/10.2307/1969331
  4. K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, U. S. A. 37 (1951), 760-766 https://doi.org/10.1073/pnas.37.11.760
  5. I. C. Gohberg and M. G. Kreˇin, Introduction to the Theory of Linear Nonselfadjoint Operators, ' Nauka' , Moscow, 1965; English transl., Transl. Math. Monograph, 18, Amer. Math. Soc, Providence, RI, 1969
  6. L. Livshits, S.-C. Ong, and S.-W. Wang, Schur algebras over function algebras, Houston J. Math. 30 (2004), no. 4, 1195-1217
  7. J. Rakbud, O. Wootijiruttikal, and P. Chaisuriya, Spaces of sequences over function algebras, J. Anal. Appl. 5 (2007), no. 3, 185-199
  8. R. Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, no. 26. Princeton University Press, Princeton, N. J., 1950
  9. J. Schur, Bemerkungen Theorie der beschranken Bilinearformen mit unendlich vielen Verander lichen, J. Reine Angew. Math., 1911