J. Korean Math. Soc. ${\bf 47}$ (2010), No. 1, pp. 29–40 DOI 10.4134/JKMS.2010.47.1.029

SCHATTEN CLASSES OF MATRICES IN A GENERALIZED $\mathcal{B}(l_2)$

JITTI RAKBUD AND PACHARA CHAISURIYA

ABSTRACT. In this paper, we study a generalization of the Banach space $\mathcal{B}(l_2)$ of all bounded linear operators on l_2 . Over this space, we present some reasonable ways to define Schatten-type classes which are generalizations of the classical Schatten classes of compact operators on l_2 .

1. Introduction and preliminary results

For a separable Hilbert space \mathcal{H} and $1 \leq p \leq \infty$, the Schatten *p*-class, \mathcal{C}_p , is the class of all compact operators A on \mathcal{H} such that the sequence $\{s_n(A)\}_{n=1}^{\infty}$ of singular values of A belongs to l_p . Equipped with the norms $|||A|||_p = ||\{s_n(A)\}_{n=1}^{\infty}||_p$, the classes \mathcal{C}_p are Banach spaces. These were introduced, in [8], by von Neumann and Schatten as a completion of the tensor product $\mathcal{H} \otimes \mathcal{H}$ in various norms. Since then many mathematicians have contributed and extended their results, see [3, 4, 5] for references. In this paper, we give some reasonable ways to define Schatten-type classes which generalize the classical Schatten classes of compact operators on l_2 .

Let X be a compact Hausdorff space, and let C(X) be the C^* -algebra of continuous complex-valued functions on X. In this paper, we denote the norm on C(X) by $\|\cdot\|_{C(X)}$. In [6], Leo Livshits, Sing-Cheong Ong, and Sheng-Wang Wang defined the sequence spaces $l_2(C(X))$ and $l_2^b(C(X))$ as follows:

$$l_{2}(C(X)) = \left\{ \{f_{k}\}_{k=1}^{\infty} : f_{k} \in C(X) \ \forall k, \left\{\sum_{k=1}^{n} |f_{k}|^{2}\right\}_{n=1}^{\infty} \text{ converges in } C(X) \right\},\$$
$$l_{2}^{b}(C(X)) = \left\{ \{f_{k}\}_{k=1}^{\infty} : f_{k} \in C(X) \ \forall k, \left\{\sum_{k=1}^{n} |f_{k}|^{2}\right\}_{n=1}^{\infty} \text{ is bounded in } C(X) \right\}.$$

Received December 13, 2007.

2000 Mathematics Subject Classification. Primary 47L10; Secondary 47L20. Key words and phrases. compact operator, Schatten p-class, singular values.

O2010 The Korean Mathematical Society

In [7], J. Rakbud and P. Chaisuriya extended to $1 \le p < \infty$:

$$l_p(C(X)) = \left\{ \{f_k\}_{k=1}^\infty : f_k \in C(X) \ \forall k, \ \left\{\sum_{k=1}^n |f_k|^p\right\}_{n=1}^\infty \text{ converges in } C(X) \right\},$$
$$l_p^b(C(X)) = \left\{ \{f_k\}_{k=1}^\infty : f_k \in C(X) \ \forall k, \ \left\{\sum_{k=1}^n |f_k|^p\right\}_{n=1}^\infty \text{ is bounded in } C(X) \right\}.$$

and proved that $l_p(C(X))$ and $l_p^b(C(X))$ endowed with the norm

$$\|\{f_k\}_{k=1}^{\infty}\|_p := \sup_{t \in X} \left(\sum_{k=1}^{\infty} |f_k(t)|^p\right)^{\frac{1}{p}}$$

are Banach spaces.

It is clear that $l_p(C(X)) \subseteq l_p^b(C(X))$. For the case where X is finite, we have $l_p(C(X)) = l_p^b(C(X))$. If X is a singleton, then $l_p(C(X)) = l_p^b(C(X)) = l_p$. The following example shows that the inclusion $l_p(C(X)) \subseteq l_p^b(C(X))$ can be proper.

Example 1.1 ([6, 7]). $l_p(C(X)) \subsetneq l_p^b(C(X))$. Let X = [0, 1] and for each $k \in \mathbb{N}$, let $f_k(t) = (t^k - t^{k+1})^{\frac{1}{p}}$ for all $t \in [0, 1]$. Let $f\langle p \rangle = \{f_k\}_{k=1}^{\infty}$. Then $f\langle p \rangle$ belongs to $l_p^b(C([0, 1]))$, but does not belong to $l_p(C([0, 1]))$.

Proposition 1.2 ([7]). Let $f = \{f_k\}_{k=1}^{\infty}$ be a sequence over C(X) with $f[t] := \{f_k(t)\}_{k=1}^{\infty} \in l_p$ for all $t \in X$. Then the following are equivalent.

- (1) $f \in l_p(C(X)).$
- (2) The function $t \mapsto f[t]$ from X into l_p is continuous.
- (3) The function $t \mapsto \|f[t]\|_p$ from X into $[0,\infty)$ is continuous.

Theorem 1.3 ([6, 7]). Let $g = \{g_k\}_{k=1}^{\infty}$ be a sequence in C(X). Then

- (1) $\{f_k g_k\}_{k=1}^{\infty} \in l_1(C(X))$ for all $f = \{f_k\}_{k=1}^{\infty} \in l_2(C(X))$ if and only if $g \in l_2^b(C(X))$. If $g \in l_2^b(C(X))$, then $\|g\|_2 = \sup\{\|\{g_k f_k\}_{k=1}^{\infty}\|_1 : f = \{f_k\}_{k=1}^{\infty} \in l_2(C(X)), \|f\|_2 \le 1\}.$
- (2) $\{f_k g_k\}_{k=1}^{\infty} \in l_1(C(X)) \text{ for all } f = \{f_k\}_{k=1}^{\infty} \in l_2^b(C(X)) \text{ if and only if } g \in l_2(C(X)). \text{ If } g \in l_2(C(X)), \text{ then } \|g\|_2 = \sup\{\|\{g_k f_k\}_{k=1}^{\infty}\|_1 : f = \{f_k\}_{k=1}^{\infty} \in l_2^b(C(X)), \|f\|_2 \le 1\}.$

2. A generalization of $\mathcal{B}(l_2)$

We say that a matrix $A = [a_{jk}]$ with entries from C(X) defines a linear operator on $l_2(C(X))$ if for every $f = \{f_k\}_{k=1}^{\infty} \in l_2(C(X))$, the series $\sum_{k=1}^{\infty} a_{jk} f_k$ converges in C(X) for all j, and the sequence $\{\sum_{k=1}^{\infty} a_{jk} f_k\}_{j=1}^{\infty}$ belongs to $l_2(C(X))$. We denote the sequence $\{\sum_{k=1}^{\infty} a_{jk} f_k\}_{j=1}^{\infty}$ by Af for all $f = \{f_k\}_{k=1}^{\infty} \in l_2(C(X))$ and call the operator $f \mapsto Af$ the linear operator defined by A. Let $\mathcal{B}(l_2(C(X)))$ be the set of all matrices A over C(X) such that A defines a linear operator on $l_2(C(X))$. For any matrix $A = [a_{jk}]$ over C(X), we let, for each $n \in \mathbb{N}$, $A_{n_{\perp}}$ be the matrix which agrees with A on the upper left $n \times n$ block and is 0 on all other entries. For each $t \in X$, we let $A[t] := [a_{jk}(t)]$. For $f = \{f_k\}_{k=1}^{\infty} \in l_2(C(X))$, we let, for each $t \in X$, $f[t] := \{f_k(t)\}_{k=1}^{\infty}$. It is clear that $f[t] \in l_2$ for all t and $||f||_2 = \sup_{t \in X} ||f[t]||_2$.

Proposition 2.1 ([6]). If $A \in \mathcal{B}(l_2(C(X)))$, then the linear operator defined by A is bounded.

If $A \in \mathcal{B}(l_2(C(X)))$, we define the norm ||A|| to be the norm of the linear operator defined by A.

Proposition 2.2. Let A be a matrix with entries from C(X).

- (1) If $A \in \mathcal{B}(l_2(C(X)))$, then $\sup_{t \in X} ||A[t]|| < \infty$. Moreover, $||A|| = \sup_{t \in X} ||A[t]||$.
- (2) If $A \in \mathcal{B}(l_2(C(X)))$, then $||A_n|| \nearrow ||A||$.

Proof. (1). Let $f = \{f_k\}_{k=1}^{\infty} \in l_2(C(X))$ with $||f||_2 \leq 1$. Then we get for each $t \in X$ that $||(A[t])f[t]||_2 \leq ||A[t]||$. So

$$|A|| = \sup\left\{\sup_{t \in X} \|(A[t])f[t]\|_2 : f \in l_2(C(X)), \|f\|_2 \le 1\right\} \le \sup_{t \in X} \|A[t]\|.$$

Let $x = \{\xi_k\}_{k=1}^{\infty} \in l_2$ with $||x||_2 \leq 1$. For each k, we put $f_k(t) = \xi_k$ for all $t \in X$ and $f_x = \{f_k\}_{k=1}^{\infty}$. Then $f_x \in l_2(C(X))$ and $||f_x||_2 = ||x||_2 \leq 1$. Thus, for each $t \in X$, $||A[t]x||_2 = ||A[t]f_x[t]||_2 \leq ||A||$. This implies that $||A[t]|| \leq ||A||$ for all t. The proof is complete.

(2). Suppose that $A \in \mathcal{B}(l_2(C(X)))$. Then by the assertion (1) above, $A[t] \in \mathcal{B}(l_2)$ for all $t \in X$. So, we have $A_{n_{\perp}}[t] \nearrow A[t]$ for all t. Hence we get by (1) again that $||A_{n_{\perp}}|| \leq ||A_{n+1_{\perp}}|| \leq ||A||$ for all n. This implies that $A_n \nearrow \sup_n ||A_{n_{\perp}}||$ and $\sup_n ||A_{n_{\perp}}|| \leq ||A||$. To see that $||A|| \leq \sup_n ||A_{n_{\perp}}||$, let $\epsilon > 0$ be given. Then by (1), there exists $s \in X$ such that $||A|| < ||A[s]|| + \epsilon$. This implies that there is a positive integer n_0 such that

$$||A|| < ||A_{n_0}[s]|| + \epsilon \le ||A_{n_0}|| + \epsilon \le \sup_n ||A_{n_j}|| + \epsilon.$$

Since ϵ is arbitrary, $||A|| \leq \sup_{n} ||A_{n_{\lrcorner}}||$.

The following example shows that for a matrix A over C(X), the finiteness of $\sup_{t \in X} ||A[t]||$ does not necessarily imply the boundedness of A.

Example 2.3. Let X = [0, 1] and let A be the matrix whose the first column is the sequence $f\langle 2 \rangle$ given in Example 1.1 and all other columns 0. Then $\sup_{t \in X} ||A[t]|| \leq 1$, but A does not define a linear operator on $l_2(C([0, 1]))$ since $Ax = f\langle 2 \rangle$, where $x = \{1, 0, 0, 0, \ldots\}$, does not belong to $l_2(C([0, 1]))$.

Lemma 2.4. If A is a matrix with entries from C(X) and the set $\{||A_{n_{\perp}}|| : n \in \mathbb{N}\}$ is bounded, then Af is a sequence in C(X) for all $f \in l_2(C(X))$.

Proof. Let $M = \sup_{n \in \mathbb{N}} ||A_{n_{\perp}}||$ and $f = \{f_k\}_{k=1}^{\infty} \in l_2(C(X))$. For any $n > m \in \mathbb{N}$, we let $f_{[m,n]} := \{0, 0, \dots, 0, f_m, f_{m+1}, \dots, f_n, 0, 0, \dots\}$, clearly, $f_{[m,n]} \in l_2(C(X))$. Let $j \in \mathbb{N}$ and $\epsilon > 0$. Then there exists a positive integer N such that

$$\left\|\sum_{k=m}^{n} |f_k|^2 \right\|_{C(X)} < \left(\frac{\epsilon}{M}\right)^2 \text{ for all } n > m > N.$$

So, if $n > m > \max\{j, N\}$, we get that

$$\begin{split} \left\| \sum_{k=m}^{n} a_{jk} f_{k} \right\|_{C(X)} &= \sup_{t \in X} \left| \sum_{k=m}^{n} a_{jk}(t) f_{k}(t) \right| \leq \left\| A_{n \downarrow} f_{[m,n]} \right\|_{2} \\ &\leq \left\| A_{n \downarrow} \right\| \left\| f_{[m,n]} \right\|_{2} \leq M \left\| \sum_{k=m}^{n} |f_{k}|^{2} \right\|_{C(X)}^{\frac{1}{2}} \\ &< M \left(\frac{\epsilon}{M} \right) = \epsilon. \end{split}$$

Hence $\left\{\sum_{k=1}^{n} a_{jk} f_k\right\}_{n=1}^{\infty}$ is a Cauchy sequence in C(X), so it is convergent. \Box

Remark 2.5. If X is a singleton, then the assumption of the above lemma implies that $A \in \mathcal{B}(l_2(C(X)))$. This is not true in general. Indeed, from Example 2.3, we also have by Proposition 2.2(1) that $||A_{n_{\perp}}|| \leq 1$ for all n, but A does not belong to $\mathcal{B}(l_2(C(X)))$. The following proposition tells us when the boundedness of the set $\{||A_{n_{\perp}}|| : n \in \mathbb{N}\}$, which is clearly equivalent to the finiteness of $\sup_{t \in X} ||A[t]||$, implies the boundedness of the matrix A.

Proposition 2.6. Suppose that A is a matrix over C(X) with $A[t] \in \mathcal{B}(l_2)$ for all $t \in X$ and the function $t \mapsto A[t]$ from X into $\mathcal{B}(l_2)$ is continuous. Then $A \in \mathcal{B}(l_2(C(X)))$.

Proof. Since the function $t \mapsto A[t]$ is continuous and X is compact, $\sup_{t \in X} ||A[t]|| < \infty$. Let $M = \sup_{t \in X} ||A[t]||$. Then for each n, $||A_{n_{\perp}}[t]|| \le ||A[t]|| \le M$ for all t. Thus, by the Proposition 2.2(1) and Lemma 2.4, Afis a sequence in C(X) for all $f \in l_2(C(X))$. We now want to show that $Af \in l_2(C(X))$ for all $f \in l_2(C(X))$. Let $f \in l_2(C(X))$. Then by Proposition 1.2, the function $t \mapsto f[t]$ from X into l_2 is continuous. For each $t \in X$, we have $A[t] \in \mathcal{B}(l_2)$. So $Af[t] = A[t]f[t] \in l_2$ for all t. It follows that the function $t \mapsto Af[t]$ from X into l_2 is well defined. For any $s, t \in X$, we have

$$\begin{split} \|Af[s] - Af[t]\|_{2} &= \|A[s]f[s] - A[t]f[t]\|_{2} \\ &\leq \|A[s]f[s] - A[s]f[t]\|_{2} + \|A[s]f[t] - A[t]f[t]\|_{2} \\ &\leq \|A[s]\| \|f[s] - f[t]\|_{2} + \|A[s] - A[t]\| \|f[t]\|_{2} \\ &\leq M \|f[s] - f[t]\|_{2} + \|A[s] - A[t]\| \|f[t]\|_{2} \,. \end{split}$$

Hence, by the continuity of the functions $t \mapsto A[t]$ and $t \mapsto f[t]$, we obtain that the function $t \mapsto Af[t]$ is continuous. So, by Proposition 1.2, $Af \in l_2(C(X))$.

Theorem 2.7. $\mathcal{B}(l_2(C(X)))$ equipped with the operator norm is a Banach space. Furthermore, $\mathcal{B}(l_2(C(X)))$ contains the identity operator, and for $A = [a_{ji}], B = [a_{ik}] \in \mathcal{B}(l_2(C(X)))$, the matrix

$$AB := \left[\sum_{i=1}^{\infty} a_{ji} b_{ik}\right]$$

belongs to $\mathcal{B}(l_2(C(X)))$ and (AB)f = A(Bf) for all $f \in l_2(C(X))$. In other words, $\mathcal{B}(l_2(C(X)))$ is a Banach subalgebra with identity of the Banach algebra of all bounded linear operators on $l_2(C(X))$.

Proof. Let $\{A_n = [a_{jk}^{(n)}]\}_{n=1}^{\infty}$ be a Cauchy sequence in $\mathcal{B}(l_2(C(X)))$. By Proposition 2.2(1), we have for each $(j,k) \in \mathbb{N} \times \mathbb{N}$ and $t \in X$ that

(*)
$$\left|a_{jk}^{(n)}(t) - a_{jk}^{(m)}(t)\right| \le \|A_n[t] - A_m[t]\| \le \|A_n - A_m\|$$
 for all n, m .

Thus, for any (j,k), $\left\|a_{jk}^{(n)} - a_{jk}^{(m)}\right\|_{C(X)} \leq \|A_n - A_m\|$ for all n, m. So $\{a_{jk}^{(n)}\}_{n=1}^{\infty}$ is a Cauchy sequence in C(X) for all (j,k). Hence, by completeness of C(X), there exists $a_{jk} \in C(X)$ such that $a_{jk}^{(n)} \to a_{jk}$ as $n \to \infty$. Put $A = [a_{jk}]$. We will show that $A \in \mathcal{B}(l_2(C(X)))$ and $A_n \to A$ as $n \to \infty$. Let $\nu \in \mathbb{N}$ and $x = \{\xi_k\}_{k=1}^{\infty} \in l_2$ with $\|x\|_2 \leq 1$. Let $M = \sup_n \|A_n\|$. Then for each $t \in X$,

$$\begin{aligned} \|A_{\nu_{\downarrow}}[t]x\|_{2}^{2} &= \sum_{j=1}^{\nu} \left|\sum_{k=1}^{\nu} a_{jk}(t)\xi_{k}\right|^{2} \\ &\leq 4\sum_{j=1}^{\nu} \left|\sum_{k=1}^{\nu} \left(a_{jk}^{(n)}(t) - a_{jk}(t)\right)\xi_{k}\right|^{2} + 4M^{2} \text{ for all } n. \end{aligned}$$

By taking the limit as $n \to \infty$, we get $||A_{\nu_{\perp}}[t]x|| \leq 2M$ for all t. Thus $||A_{\nu_{\perp}}[t]|| \leq 2M$ for all t. It follows from Proposition 2.2(1) that $||A_{\nu_{\perp}}|| \leq 2M$ for all ν . Hence, by Lemma 2.4, Af is a sequence in C(X) for all $f \in l_2(C(X))$. Let $\epsilon > 0$ be given. Since $\{A_n\}_{n=1}^{\infty}$ is a Cauchy sequence, there exists a positive integer N such that $||A_n - A_m|| < \frac{\epsilon}{2}$ for all $n, m \geq N$. By (*), we also have that $\{A_n[t]\}_{n=1}^{\infty}$ is a Cauchy sequence in $\mathcal{B}(l_2)$ for all t. Hence, for each t, there exists $B[t] = [b_{jk}(t)] \in \mathcal{B}(l_2)$ such that $A_n[t] \to B[t]$ as $n \to \infty$. For each (j, k), we have for every t that $|a_{jk}^{(n)}(t) - b_{jk}(t)| \leq ||A_n[t] - B[t]|| \to 0$ as $n \to \infty$. It follows that A[t] = B[t] for all t. Let $f = \{f_k\}_{k=1}^{\infty} \in l_2(C(X))$ with $||f||_2 \leq 1$. Then

$$\sup_{t \in X} \|(A_n[t] - A_m[t])f[t]\|_2 = \|(A_n - A_m)f\|_2 \le \|A_n - A_m\|$$

< $\frac{\epsilon}{2}$ for all $n, m \ge N$.

By taking the limit as $m \to \infty$, we get

(**)
$$||(A_n - A)f||_2 \le \frac{\epsilon}{2} \quad \text{for all } n \ge N.$$

This gives us that $Af \in l_2^b(C(X))$ and $A_n f \to Af$ in $l_2^b(C(X))$. Since $A_n \in \mathcal{B}(l_2(C(X)))$ for all $n, A_n f \in l_2(C(X))$ by closedness of $l_p(C(X))$ in $l_p^b(C(X))$. Hence $Af \in l_2(C(X))$. Thus $A \in \mathcal{B}(l_2(C(X)))$. Since (**) holds for arbitrary $f \in l_2(C(X))$, $||A_n - A|| < \epsilon$ for all $n \ge N$. Consequently, $A_n \to A$ as $n \to \infty$. It is obvious that the linear operator defined by the matrix with entries in the main diagonal 1 and all other entries 0 is exactly the identity operator on $l_2(C(X))$. Let $A = [a_{ji}], B = [b_{ik}] \in \mathcal{B}(l_2(C(X)))$. Then for each k, $\{\sum_{i=1}^{\infty} a_{ji}b_{ik}\}_{j=1}^{\infty} = A(Be_k) \in l_2(C(X))$, where e_k is the sequence with kth coordinate 1 and all other coordinates 0. Thus the series $\sum_{i=1}^{\infty} a_{ji}b_{ik}$ converges in C(X) for all (j,k). So the matrix $AB = [\sum_{i=1}^{\infty} a_{ji}b_{ik}]$ is well defined. We will show that AB defines a linear operator on $l_2(C(X))$ and (AB)f = A(Bf) for all $f \in l_2(C(X))$. Let $f = \{f_k\}_{k=1}^{\infty} \in l_2(C(X))$. Then we have for every n that

$$\begin{aligned} \|(AB)_{n_{\perp}}f\|_{2} &= \sup_{t \in X} \left(\sum_{j=1}^{n} \left| \sum_{k=1}^{n} \sum_{i=1}^{\infty} a_{ji}(t)b_{ik}(t)f_{k}(t) \right|^{2} \right)^{1/2} \\ &= \sup_{t \in X} \left(\sum_{j=1}^{n} \left| \sum_{i=1}^{\infty} \sum_{k=1}^{n} a_{ji}(t)b_{ik}(t)f_{k}(t) \right|^{2} \right)^{1/2} \\ &= \|A_{n_{\perp}}(Bf_{n_{\perp}})\|_{2} \le \|A_{n_{\perp}}\| \|B\| \|f_{n_{\perp}}\|_{2} \le \|A\| \|B\| \|f\|_{2}. \end{aligned}$$

It follows that $||(AB)_{n_{\perp}}|| \leq ||A|| ||B||$ for all *n*. Hence, by Lemma 2.4, we obtain that (AB)f is a sequence in C(X). Since A[t] and B[t] belong to $\mathcal{B}(l_2)$ for all t, (AB)[t]f[t] = A[t](B[t]f[t]). This implies that (AB)f = A(B(f)), so $(AB)f \in l_2(C(X))$. The proof is complete.

For $A \in \mathcal{B}(l_2(C(X)))$, we have by Proposition 2.2(1) that $A[t] \in \mathcal{B}(l_2)$ for all $t \in X$. So the function $c_A : X \to \mathcal{B}(l_2)$ defined by $c_A(t) = A[t]$ for all $t \in X$ is well defined. Let $\mathcal{B}_c(l_2(C(X)))$ be the set of matrices A in $\mathcal{B}(l_2(C(X)))$ such that the function c_A is continuous. For the case where X is a singleton, we have that $\mathcal{B}_c(l_2(C(X))) = \mathcal{B}(l_2(C(X))) = \mathcal{B}(l_2)$.

Proposition 2.8. The inclusion $\mathcal{B}_c(l_2(C(X))) \subseteq \mathcal{B}(l_2(C(X)))$ can be proper.

Proof. Let X = [0,1] and A be the matrix with the first row the sequence $f\langle 2 \rangle = \{f_k\}_{k=1}^{\infty}$ defined in Example 1.1 and all other rows 0. Since $f\langle 2 \rangle \in l_2^b(C(X))$, by Theorem 1.3, we get that $A \in \mathcal{B}(l_2(C(X)))$. Let $t_n = 1 - \frac{1}{n}$ for $n = 1, 2, 3, \ldots$. We have that $t_n \to 1$ as $n \to \infty$ and $\sum_{k=n}^{2n} |f_k(t_n)|^2 = (1 - \frac{1}{n})^n - (1 - \frac{1}{n})^{2n+1} \to \frac{1}{e} - \frac{1}{e^2}$ as $n \to \infty$. Obviously, A[1] = 0. We claim that $A[t_n]$ does not converge to A[1]. Suppose that $A[t_n] \to A[1]$ as $n \to \infty$. Fix $0 < \epsilon < \frac{1}{e} - \frac{1}{e^2}$, then there exists a positive integer N such that $\sum_{k=n}^{2n} |f_k(t_n)|^2 \le ||f_k(2\rangle[t_n]||_2^2 = ||A[t_n]||^2 < \epsilon$ for all $n \ge N$. By letting $n \to \infty$, we obtain that $\frac{1}{e} - \frac{1}{e^2} \le \epsilon$, which is a contradiction.

Theorem 2.9. $\mathcal{B}_c(l_2(C(X)))$ is a Banach subalgebra with identity of $\mathcal{B}(l_2(C(X)))$.

Proof. To see that $\mathcal{B}_c(l_2(C(X)))$ is a Banach space, we will show that it is a closed subspace of $\mathcal{B}(l_2(C(X)))$. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence in $\mathcal{B}_c(l_2(C(X)))$ and $A \in \mathcal{B}(l_2(C(X)))$. Suppose that $A_n \to A$ as $n \to \infty$. We want to show that $A \in \mathcal{B}_c(l_2(C(X)))$. Let $\{t_\alpha\}$ be a net in X and suppose that $t_\alpha \to t$ for some $t \in X$. Let $\epsilon > 0$ be given. Then there exists a positive integer N such that $||A_N - A|| < \frac{\epsilon}{3}$. Since $A_N \in \mathcal{B}_c(l_2(C(X)))$, $A_N[t_\alpha] \to A_N[t]$. Hence there exists γ such that $||A_N[t_\alpha] - A_N[t]|| < \frac{\epsilon}{3}$ for all $\alpha \succeq \gamma$. So, for $\alpha \succeq \gamma$,

$$\begin{aligned} \|A[t_{\alpha}] - A[t]\| &\leq \|A_N[t_{\alpha}] - A[t_{\alpha}]\| + \|A_N[t] - A[t]\| + \|A_N[t_{\alpha}] - A_N[t]\| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{aligned}$$

It follows that $A \in \mathcal{B}_c(l_2(C(X)))$. Therefore $\mathcal{B}_c(l_2(C(X)))$ is a Banach subspace of $\mathcal{B}(l_2(C(X)))$. It is clear that the identity matrix belongs to $\mathcal{B}_c(l_2(C(X)))$. For $A, B \in \mathcal{B}_c(l_2(C(X)))$, we have for all $t \in X$ that $||A[t]|| \leq ||A||$, $||B[t]|| \leq ||B||$ and $c_{AB}(t) = AB[t] = A[t]B[t] = c_A(t)c_B(t)$. Since $\mathcal{B}(l_2)$ is a Banach algebra under the composition operation, c_{AB} is continuous. \Box

The following are consequences of Proposition 2.6.

Proposition 2.10. $\mathcal{B}_c(l_2(C(X)))$ is equal to the set of all matrices A over C(X) such that $A[t] \in \mathcal{B}(l_2)$ for all $t \in X$ and the function $t \mapsto A[t]$ from X into $\mathcal{B}(l_2)$ is continuous.

Proof. It follows directly from Proposition 2.6.

For $A = [a_{jk}] \in \mathcal{B}(l_2(C(X)))$, we let $A^* = [c_{jk}]$, where $c_{jk} = \overline{a_{kj}}$ for all j, k. In the case where X is a singleton, we have that A^* is exactly the adjoint of A, so it belongs to $\mathcal{B}(l_2(C(X)))$. In general, this is not true: for example, consider the matrix A with the first row the sequence $f\langle 2 \rangle$ given in Example 1.1 and all other rows 0. We have seen from Proposition 2.8 and Example 2.3 that $A \in \mathcal{B}(l_2(C(X)))$ and $A^* \notin \mathcal{B}(l_2(C(X)))$.

Proposition 2.11. If $A \in \mathcal{B}_c(l_2(C(X)))$, then $A^* \in \mathcal{B}_c(l_2(C(X)))$.

Proof. It follows immediately from the continuity of the function $B \mapsto B^*$ on $\mathcal{B}(l_2)$ and Proposition 2.6.

Corollary 2.12. $\mathcal{B}_c(l_2(C(X)))$ equipped with the involution $A \mapsto A^*$ is a C^* -algebra with identity.

Proposition 2.13. $\mathcal{B}_c(l_2(C(X)))$ is a Banach algebra (without identity) under the Schur product.

Proof. Let $A, B \in \mathcal{B}_c(l_2(C(X)))$. Then by Schur-Bennett's theorem [1, 9]: $\mathcal{B}(l_2)$ is a Banach algebra under the Schur product, we obtain that the function $c_{A \bullet B}$ is well defined. Since the functions c_A and c_B are continuous, and we have $||A[t]|| \leq ||A||$ and $||B[t]|| \leq ||B||$ for all t, the function $c_{A \bullet B}$ is continuous. Thus, by Proposition 2.6, $A \bullet B \in \mathcal{B}_c(l_2(C(X)))$. By Schur-Bennett's theorem again, we obtain $||(A \bullet B)[t]|| = ||A[t] \bullet B[t]|| \leq ||A[t]|| ||B[t]|| \leq ||A|| ||B||$ for all t. It

follows from Proposition 2.2(1) that $||A \bullet B|| \leq ||A|| ||B||$. So $\mathcal{B}_c(l_2(C(X)))$ is a Banach algebra under the Schur product.

We do not however know if $\mathcal{B}(l_2(C(X)))$ is closed under the Schur product.

3. Schatten classes of matrices in $\mathcal{B}_c(l_2(C(X)))$

Let \mathcal{M}_0 be the set of matrices over C(X) having finitely many nonzero entries, and $\mathcal{K}(C(X))$ be the closure of \mathcal{M}_0 in $\mathcal{B}(l_2(C(X)))$.

Proposition 3.1. $\mathcal{K}(C(X)) \subsetneq \mathcal{B}_c(l_2(C(X))).$

Proof. It is easy to see that $\mathcal{M}_0 \subseteq \mathcal{B}_c(l_2(C(X)))$. Hence, by Theorem 2.9, $\mathcal{K}(C(X)) \subseteq \mathcal{B}_c(l_2(C(X)))$. Since the identity matrix does not belong to $\mathcal{K}(C(X))$, the inclusion is proper.

Proposition 3.2. $A \in \mathcal{K}(C(X))$ if and only if $||A_{n_{\perp}} - A|| \to 0$ as $n \to \infty$.

Proof. Suppose that $A \in \mathcal{K}(C(X))$ and let $\epsilon > 0$. Then there exists $B \in \mathcal{M}_0$ such that $||A - B|| < \frac{\epsilon}{2}$. Let N be a positive integer such that $B_{N_{\perp}} = B$. Then for $n \ge N$, $A_{n_{\perp}} - B = (A - B)_{n_{\perp}}$. Hence, by Proposition 2.2(2), we have

$$\begin{aligned} \|A_{n_{\neg}} - A\| &\leq \|A - B\| + \|A_{n_{\neg}} - B\| = \|A - B\| + \|(A - B)_{n_{\neg}}\| \\ &\leq 2\|A - B\| < \epsilon \quad \text{for all } n \ge N. \end{aligned}$$

The converse is obvious.

Let \mathcal{K} be the class of compact operators on l_2 . If X is a singleton, then $\mathcal{K}(C(X)) = \mathcal{K}$.

Proposition 3.3. $\mathcal{K}(C(X)) = \{A \in \mathcal{B}_c(l_2(C(X))) : A[t] \in \mathcal{K} \text{ for all } t \in X\}.$

Proof. Suppose that $A \in \mathcal{B}_c(l_2(C(X)))$ with $A[t] \in \mathcal{K}$ for all $t \in X$. Let $\epsilon > 0$ be given. Then by the continuity of the function c_A , we get for each $t \in X$ that there exists an open set U(t) in X such that $t \in U(t)$ and

$$||A[t] - A[s]|| < \frac{\epsilon}{4} \text{ for all } s \in U(t).$$

Since X is compact, there exist $t_1, t_2, \ldots, t_m \in X$ such that $X = U(t_1) \cup U(t_2) \cup \cdots \cup U(t_m)$. Since $A[t_i] \in \mathcal{K}$ for all $i \in \{1, 2, \ldots, m\}$, there exists, for each i, a positive integer N_i such that

$$||A_{n_{\downarrow}}[t_i] - A[t_i]|| < \frac{\epsilon}{4} \text{ for all } n \ge N_i.$$

Put $N = \max\{N_1, N_2, \ldots, N_m\}$ and let $s \in X$. Then there exists $i_0 \in \{1, 2, \ldots, m\}$ such that $s \in U(t_{i_0})$. Hence if $n \ge N$, we have that

$$\begin{aligned} \|A_{n_{\lrcorner}}[s] - A[s]\| &\leq \|A_{n_{\lrcorner}}[t_{i_{0}}] - A_{n_{\lrcorner}}[s]\| + \|A_{n_{\lrcorner}}[t_{i_{0}}] - A[t_{i_{0}}]\| + \|A[t_{i_{0}}] - A[s]\| \\ &\leq 2 \|A[t_{i_{0}}] - A[s]\| + \|A_{n_{\lrcorner}}[t_{i_{0}}] - A[t_{i_{0}}]\| < \frac{2\epsilon}{4} + \frac{\epsilon}{4} = \frac{3\epsilon}{4}. \end{aligned}$$

Thus, by Proposition 2.2(1), we obtain that

$$||A_{n} - A|| < \epsilon \text{ for all } n \ge N.$$

So $A \in \mathcal{K}(C(X))$. The reverse inclusion follows immediately from Proposition 3.1 and Proposition 2.2(1). The proof is complete.

Corollary 3.4. $\mathcal{K}(C(X))$ is a proper closed ideal of $\mathcal{B}_{c}(l_{2}(C(X)))$.

Proof. If $A \in \mathcal{K}(C(X))$ and $B \in \mathcal{B}_c(l_2(C(X)))$, then AB[t] and BA[t] are elements of \mathcal{K} for all t. Hence, by proposition above, both AB and BA belong to $\mathcal{K}(C(X))$. Consequently, $\mathcal{K}(C(X))$ is an ideal of $\mathcal{B}_c(l_2(C(X)))$.

The following example shows us that $\mathcal{K}(C(X))$ may not be an ideal of $\mathcal{B}(l_2(C(X)))$.

Example 3.5. Let X = [0, 1], let A be the matrix whose (1, 1) entry is 1 and all other entries 0, and let B be the matrix with the first row the sequence $f\langle 2 \rangle$ given in Example 1.1 and all other rows 0. Clearly, AB = B. We have seen from Proposition 2.8 that $B \in \mathcal{B}(l_2(C([0, 1]))) \setminus \mathcal{B}_c(l_2(C([0, 1])))$.

If $A \in \mathcal{K}(C(X))$, then $A[t] \in \mathcal{K}$ for all $t \in X$. For each $t \in X$, let $\{s_n(A[t])\}_{n=1}^{\infty}$ be the sequence of singular values of A[t]. For each $n \in \mathbb{N}$, let $\tilde{s}_n(A) : X \to [0, \infty)$ be the function defined by

$$\widetilde{s}_n(A)(t) = s_n(A[t])$$
 for all $t \in X$.

Theorem 3.6. For $A \in \mathcal{K}(C(X))$, the function $\tilde{s}_n(A)$ is continuous for all n. Furthermore, $\tilde{s}_1(A)(t) \geq \tilde{s}_2(A)(t) \geq \cdots \geq 0$ for all $t \in X$ and $\tilde{s}_n(A) \to 0$ as $n \to \infty$ in C(X).

Proof. Let $A \in \mathcal{K}(C(X))$. For each $n \in \mathbb{N}$, we defined a function $f_n : \mathcal{K} \to [0,\infty)$ by $f_n(B) = s_n(B)$ for all $B \in \mathcal{K}$. Clearly, $\tilde{s}_n(A) = f_n c_A$ for all n, hence, by Proposition 3.1, the continuity of $\tilde{s}_n(A)$ will be proved once we can show that f_n is continuous. The continuity of f_n follows directly from the fact that $|s_n(B) - s_n(C)| \leq ||B - C||$ for all $B, C \in \mathcal{K}$. It is clear that for every $t \in X$, $\tilde{s}_1(A)(t) \geq \tilde{s}_2(A)(t) \geq \cdots \geq 0$. Since X is compact and $\tilde{s}_n(A)(t) \to 0$ as $n \to \infty$ for all $t \in X$, $\|\tilde{s}_n(A)\|_{C(X)} \to 0$ as $n \to \infty$.

For $1 \leq p < \infty$, we define three classes of matrices in $\mathcal{K}(C(X))$ as follows:

$$\mathcal{C}_p^b(C(X)) = \left\{ A \in \mathcal{K}(C(X)) : \{ \widetilde{s}_n(A) \}_{n=1}^\infty \in l_p^b(C(X)) \right\};$$

$$\mathcal{C}_p(C(X)) = \left\{ A \in \mathcal{K}(C(X)) : \{ \widetilde{s}_n(A) \}_{n=1}^\infty \in l_p(C(X)) \right\};$$

$$\mathcal{C}_p^c(C(X)) = \left\{ A \in \mathcal{K}(C(X)) : \text{the function } t \mapsto A[t] \text{ from } X \text{ into } \mathcal{C}_p \right\}$$

is continuous.

It is clear that $A \in \mathcal{C}_p^b(C(X))$ if and only if $A \in \mathcal{K}(C(X))$ and $\sup_{t \in X} |||A[t]|||_p < \infty$.

Proposition 3.7. $\mathcal{C}_p^c(C(X)) \subseteq \mathcal{C}_p(C(X)) \subseteq \mathcal{C}_p^b(C(X)).$

Proof. It is obvious that both $\mathcal{C}_p^c(C(X))$ and $\mathcal{C}_p(C(X))$ are subsets of $\mathcal{C}_p^b(C(X))$. We will show that $\mathcal{C}_p^c(C(X)) \subseteq \mathcal{C}_p(C(X))$. Suppose that $A \in \mathcal{C}_p^c(C(X))$. Then the function $t \mapsto A[t]$ from X into \mathcal{C}_p is continuous. This implies that the function $t \mapsto ||A[t]||_p = ||\{\tilde{s}_k(A)(t)\}_{k=1}^{\infty}||_p$ is continuous. It follows from Proposition 1.2 that $\{\tilde{s}_k(A)\}_{k=1}^{\infty} \in l_p(C(X))$, so $A \in \mathcal{C}_p(C(X))$.

The following example shows that the inclusion $\mathcal{C}_p(C(X)) \subseteq \mathcal{C}_p^b(C(X))$ can be proper. So the inclusion $\mathcal{C}_p^c(C(X)) \subseteq \mathcal{C}_p^b(C(X))$ can also be proper. For the space $l_p(C(X))$, we have that $f \in l_p(C(X))$ if and only if the function $t \mapsto f[t]$ from X into l_p is continuous. We expect to have a similar characterization for $\mathcal{C}_p(C(X))$, i.e., $A \in \mathcal{C}_p(C(X))$ if and only if the function $t \mapsto A[t]$ from X into \mathcal{C}_p is continuous (or equivalently, $\mathcal{C}_p(C(X)) = \mathcal{C}_p^c(C(X))$). Now, we have $\mathcal{C}_p^c(C(X)) \subseteq \mathcal{C}_p(C(X))$, but we do not know if we have equality or an example of proper inclusion.

Example 3.8. $C_p(C(X)) \subsetneq C_p^b(C(X))$. Let X = [0, 1] and let A be the matrix with the main diagonal the sequence $f\langle p \rangle = \{f_k\}_{k=1}^{\infty}$ given in Example 1.1 and all other entries 0. It is easy to see that $A \in \mathcal{B}(l_2(C([0, 1])))$. Since $f_k \to 0$ as $n \to \infty$ in C(X), $A \in \mathcal{K}(C([0, 1]))$. It is clear that $\tilde{s}_k(A) = f_k$ for all k. Hence $A \in C_p^b(C([0, 1])) \setminus C_p(C([0, 1]))$.

It is easy to see that $\mathcal{C}_p^b(C(X))$ and $\mathcal{C}_p^c(C(X))$ are linear spaces. For the case where X is infinite, we do not know if $\mathcal{C}_p(C(X))$ is closed under addition.

Theorem 3.9. $\mathcal{C}_p^b(C(X))$ and $\mathcal{C}_p^c(C(X))$ equipped with the norm

$$|||A|||_p := \sup_{t \in X} |||A[t]|||_p$$

are Banach spaces.

Proof. Let $\{A_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $\mathcal{C}_p^b(C(X))$. Note that for any $B \in \mathcal{C}_p$, $\|B\| = s_1(B) \leq \|\|B\|\|_p$. This gives us that $\{A_n\}_{n=1}^{\infty}$ is also a Cauchy sequence in $\mathcal{K}(C(X))$. So there exists A in $\mathcal{K}(C(X))$ such that $A_n \to A$ in $\mathcal{K}(C(X))$. We will show that $A \in \mathcal{C}_p^b(C(X))$ and $A_n \to A$ as $n \to \infty$. Since $\{A_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $\mathcal{C}_p^b(C(X))$, and $A_n \to A$ as $n \to \infty$. Since $\{A_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $\mathcal{C}_p^b(C(X))$, $\{A_n[t]\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathcal{C}_p^b for all $t \in X$. Thus, for each t, we have by completeness of \mathcal{C}_p that there exists A_t in \mathcal{C}_p such that $A_n[t] \to A_t$ as $n \to \infty$. From this, we have $A_n[t] \to A_t$ in \mathcal{K} for all t. Since $A_n \to A$ in $\mathcal{K}(C(X))$, $A_n[t] \to A[t]$ in \mathcal{K} for all t. Hence $A[t] = A_t$ for all t. Let $\epsilon > 0$ be given. Then there exists a positive integer N such that for any t, $||A_n[t] - A_m[t]|||_p \leq ||A_n - A_m||_p \leq \frac{\epsilon}{2}$ for all $n, m \geq N$. By taking the limit as $m \to \infty$, we obtain for each t that $|||A_n[t] - A[t]|||_p \leq \frac{\epsilon}{2}$ for all $n \geq N$. It follows that $|||A_n - A||_p = \sup_{t \in X} |||A_n[t] - A[t]|||_p \leq \frac{\epsilon}{2} < \epsilon$ for all $n \geq N$. This gives us that $A \in \mathcal{C}_p^b(C(X))$ and $A_n \to A$ as $n \to \infty$. Accordingly, $\mathcal{C}_p^b(C(X))$ is a Banach space.

To see that $\mathcal{C}_p^c(C(X))$ is a Banach space, we will show that it is a closed subspace of $\mathcal{C}_p^b(C(X))$. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence in $\mathcal{C}_p^c(C(X))$ and $A \in$ $\mathcal{C}_p^b(C(X))$. Suppose that $A_n \to A$ as $n \to \infty$. Let $\{t_\alpha\}$ be a net in X such that $t_{\alpha} \to t$ for some $t \in X$. We want to show that $||A[t_{\alpha}] - A[t]|| \to 0$. Let $\epsilon > 0$. Then there exists a positive integer N such that $|||A_N - A|||_p < \frac{\epsilon}{3}$. Since $A_N \in \mathcal{C}_p^c(C(X))$, there is γ such that $|||A_N[t_\alpha] - A_N[t]|||_p < \frac{\epsilon}{3}$ for all $\alpha \succeq \gamma$. So $|||A[t_{\alpha}] - A[t]|||_{p} \le ||A_{N}[t_{\alpha}] - A[t_{\alpha}]|||_{p} + |||A_{N}[t] - A[t]|||_{p} + |||A_{N}[t_{\alpha}] - A_{N}[t]||_{p}$ $< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$ for all $\alpha \succeq \gamma$.

The proof is complete.

Proposition 3.10. $\mathcal{C}_{p}^{b}(C(X))$ and $\mathcal{C}_{p}^{c}(C(X))$ are ideals of $\mathcal{B}_{c}(l_{2}(C(X)))$.

Proof. We will first show that $\mathcal{C}_p^b(C(X))$ is an ideal of $\mathcal{B}_c(l_2(C(X)))$. Let $A \in \mathcal{C}_p^b(C(X))$ and $B \in \mathcal{B}_c(l_2(C(X)))$. Then by Corollary 3.4, both AB and BA belong to $\mathcal{K}(C(X))$. Since $A[t] \in \mathcal{C}_p$ and $B[t] \in \mathcal{B}(l_2)$ for all $t \in X$, $|||(AB)[t]|||_p \leq |||A[t]||_p ||B[t]|| \leq |||A||_p ||B||$. Similarly, we have $|||(BA)[t]||_p \leq$ $|||A|||_p ||B||$ for all t. This implies that both AB and BA belong to $\mathcal{C}_p^b(C(X))$, so $\mathcal{C}_p^{\hat{b}}(C(X))$ is an ideal of $\mathcal{B}_c(l_2(C(X)))$.

To show that $\mathcal{C}_p^c(C(X))$ is an ideal of $\mathcal{B}_c(l_2(C(X)))$, suppose that $A \in$ $\mathcal{C}_p^c(C(X))$ and $B \in \mathcal{B}_c(l_2(C(X)))$. We will show that $AB \in \mathcal{C}_p^c(C(X))$. By the fact above, we have $AB \in \mathcal{C}^b_p(C(X))$. For any $s, t \in X$, we have

$$\begin{split} \||AB[s] - AB[t]|||_{p} &= \||A[s]B[s] - A[t]B[t]|||_{p} \\ &\leq \||A[s]B[s] - A[s]B[t]|||_{p} + \||A[s]B[t] - A[t]B[t]||_{p} \\ &\leq \||A[s]||_{p} \||B[s] - B[t]|| + \|A[s] - A[t]||_{p} \|B[t]|| \\ &\leq \||A\||_{p} \|B[s] - B[t]|| + \|A[s] - A[t]\||_{p} \|B\|. \end{split}$$

So, by the assumption, the function $t \mapsto AB[t]$ is continuous. This means that $AB \in \mathcal{C}_p^c(C(X))$. By using a similar argument, we also have that $BA \in$ $\mathcal{C}_p^c(C(X))$. It follows that $\mathcal{C}_p^c(C(X))$ is an ideal of $\mathcal{B}_c(l_2(C(X)))$.

References

- [1] G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), no. 3, 603-639.
- [2] K. R. Davidson, Nest Algebras, Longman Scientific and Technical, Essex, UK, 1988.
- [3] J. Dixmier, Les fonctionnelles lin'earies sur l'ensemble des opérateurs bornés d'un espace de Hilbert, Ann. of Math. (2) 51 (1950). 387-408.
- [4] K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci., U. S. A. 37 (1951), 760-766.
- [5] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, "Nauka", Moscow, 1965; English transl., Transl. Math. Monograph, 18, Amer. Math. Soc, Providence, RI, 1969.
- [6] L. Livshits, S.-C. Ong, and S.-W. Wang, Schur algebras over function algebras, Houston J. Math. **30** (2004), no. 4, 1195–1217.
- [7] J. Rakbud, O. Wootijiruttikal, and P. Chaisuriya, Spaces of sequences over function algebras, J. Anal. Appl. 5 (2007), no. 3, 185-199.
- [8] R. Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, no. 26. Princeton University Press, Princeton, N. J., 1950.

J. RAKBUD AND P. CHAISURIYA

[9] J. Schur, Bemerkungen Theorie der beschranken Bilineärformen mit unendlich vielen Veränder lichen, J. Reine Angew. Math., 1911.

JITTI RAKBUD DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SILPAKORN UNIVERSITY NAKORN PATHOM 73000, THAILAND *E-mail address*: jitti@su.ac.th

Pachara Chaisuriya Department of Mathematics Faculty of Science Mahidol University Bangkok 10400, Thailand *E-mail address*: scpcs@mahidol.ac.th