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SCHATTEN CLASSES OF MATRICES
IN A GENERALIZED B(l2)

Jitti Rakbud and Pachara Chaisuriya

Abstract. In this paper, we study a generalization of the Banach space
B(l2) of all bounded linear operators on l2. Over this space, we present
some reasonable ways to define Schatten-type classes which are general-
izations of the classical Schatten classes of compact operators on l2.

1. Introduction and preliminary results

For a separable Hilbert space H and 1 ≤ p ≤ ∞, the Schatten p-class,
Cp, is the class of all compact operators A on H such that the sequence
{sn(A)}∞n=1 of singular values of A belongs to lp. Equipped with the norms
‖|A|‖p = ‖{sn(A)}∞n=1‖p, the classes Cp are Banach spaces. These were intro-
duced, in [8], by von Neumann and Schatten as a completion of the tensor
product H⊗H in various norms. Since then many mathematicians have con-
tributed and extended their results, see [3, 4, 5] for references. In this paper,
we give some reasonable ways to define Schatten-type classes which generalize
the classical Schatten classes of compact operators on l2.

Let X be a compact Hausdorff space, and let C(X) be the C∗-algebra of
continuous complex-valued functions on X. In this paper, we denote the norm
on C(X) by ‖·‖C(X). In [6], Leo Livshits, Sing-Cheong Ong, and Sheng-Wang
Wang defined the sequence spaces l2(C(X)) and lb2(C(X)) as follows:

l2(C(X)) =

{
{fk}∞k=1 : fk ∈ C(X) ∀k,

{
n∑

k=1

|fk|2
}∞

n=1

converges in C(X)

}
,

lb2(C(X)) =

{
{fk}∞k=1 : fk ∈ C(X) ∀k,

{
n∑

k=1

|fk|2
}∞

n=1

is bounded in C(X)

}
.
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In [7], J. Rakbud and P. Chaisuriya extended to 1 ≤ p < ∞:

lp(C(X)) =

{
{fk}∞k=1 : fk ∈ C(X) ∀k,

{
n∑

k=1

|fk|p
}∞

n=1

converges in C(X)

}
,

lbp(C(X)) =

{
{fk}∞k=1 : fk ∈ C(X) ∀k,

{
n∑

k=1

|fk|p
}∞

n=1

is bounded in C(X)

}

and proved that lp(C(X)) and lbp(C(X)) endowed with the norm

‖{fk}∞k=1‖p := sup
t∈X

( ∞∑

k=1

|fk(t)|p
) 1

p

are Banach spaces.
It is clear that lp(C(X)) ⊆ lbp(C(X)). For the case where X is finite, we have

lp(C(X)) = lbp(C(X)). If X is a singleton, then lp(C(X)) = lbp(C(X)) = lp.
The following example shows that the inclusion lp(C(X)) ⊆ lbp(C(X)) can be
proper.

Example 1.1 ([6, 7]). lp(C(X))  lbp(C(X)). Let X = [0, 1] and for each
k ∈ N, let fk(t) = (tk− tk+1)

1
p for all t ∈ [0, 1]. Let f〈p〉 = {fk}∞k=1. Then f〈p〉

belongs to lbp(C([0, 1])), but does not belong to lp(C([0, 1])).

Proposition 1.2 ([7]). Let f = {fk}∞k=1 be a sequence over C(X) with f [t] :=
{fk(t)}∞k=1 ∈ lp for all t ∈ X. Then the following are equivalent.

(1) f ∈ lp(C(X)).
(2) The function t 7→ f [t] from X into lp is continuous.
(3) The function t 7→ ‖f [t]‖p from X into [0,∞) is continuous.

Theorem 1.3 ([6, 7]). Let g = {gk}∞k=1 be a sequence in C(X). Then
(1) {fkgk}∞k=1 ∈ l1(C(X)) for all f = {fk}∞k=1 ∈ l2(C(X)) if and only if

g ∈ lb2(C(X)). If g ∈ lb2(C(X)), then ‖g‖2 = sup{‖{gkfk}∞k=1‖1 : f =
{fk}∞k=1 ∈ l2(C(X)), ‖f‖2 ≤ 1}.

(2) {fkgk}∞k=1 ∈ l1(C(X)) for all f = {fk}∞k=1 ∈ lb2(C(X)) if and only if
g ∈ l2(C(X)). If g ∈ l2(C(X)), then ‖g‖2 = sup{‖{gkfk}∞k=1‖1 : f =
{fk}∞k=1 ∈ lb2(C(X)), ‖f‖2 ≤ 1}.

2. A generalization of B(l2)

We say that a matrix A = [ajk] with entries from C(X) defines a lin-
ear operator on l2(C(X)) if for every f = {fk}∞k=1 ∈ l2(C(X)), the series∑∞

k=1 ajkfk converges in C(X) for all j, and the sequence {∑∞
k=1 ajkfk}∞j=1

belongs to l2(C(X)). We denote the sequence {∑∞
k=1 ajkfk}∞j=1

by Af for all
f = {fk}∞k=1 ∈ l2(C(X)) and call the operator f 7→ Af the linear operator de-
fined by A. Let B(l2(C(X))) be the set of all matrices A over C(X) such that
A defines a linear operator on l2(C(X)). For any matrix A = [ajk] over C(X),
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we let, for each n ∈ N, Any be the matrix which agrees with A on the upper left
n×n block and is 0 on all other entries. For each t ∈ X, we let A[t] := [ajk(t)].
For f = {fk}∞k=1 ∈ l2(C(X)), we let, for each t ∈ X, f [t] := {fk(t)}∞k=1. It is
clear that f [t] ∈ l2 for all t and ‖f‖2 = sup

t∈X
‖f [t]‖2.

Proposition 2.1 ([6]). If A ∈ B(l2(C(X))), then the linear operator defined
by A is bounded.

If A ∈ B(l2(C(X))), we define the norm ‖A‖ to be the norm of the linear
operator defined by A.

Proposition 2.2. Let A be a matrix with entries from C(X).
(1) If A ∈ B(l2(C(X))), then supt∈X ‖A[t]‖ < ∞. Moreover, ‖A‖ =

supt∈X ‖A[t]‖.
(2) If A ∈ B(l2(C(X))), then ‖Any‖ ↗ ‖A‖.

Proof. (1). Let f = {fk}∞k=1 ∈ l2(C(X)) with ‖f‖2 ≤ 1. Then we get for each
t ∈ X that ‖(A[t])f [t]‖2 ≤ ‖A[t]‖. So

‖A‖ = sup
{

sup
t∈X

‖(A[t])f [t]‖2 : f ∈ l2(C(X)), ‖f‖2 ≤ 1
}
≤ sup

t∈X
‖A[t]‖ .

Let x = {ξk}∞k=1 ∈ l2 with ‖x‖2 ≤ 1. For each k, we put fk(t) = ξk for all
t ∈ X and fx = {fk}∞k=1. Then fx ∈ l2(C(X)) and ‖fx‖2 = ‖x‖2 ≤ 1. Thus,
for each t ∈ X, ‖A[t]x‖2 = ‖A[t]fx[t]‖2 ≤ ‖A‖. This implies that ‖A[t]‖ ≤ ‖A‖
for all t. The proof is complete.

(2). Suppose that A ∈ B(l2(C(X))). Then by the assertion (1) above,
A[t] ∈ B(l2) for all t ∈ X. So, we have Any [t] ↗ A[t] for all t. Hence we
get by (1) again that ‖Any‖ ≤ ‖An+1y‖ ≤ ‖A‖ for all n. This implies that
An ↗ supn ‖Any‖ and supn ‖Any‖ ≤ ‖A‖. To see that ‖A‖ ≤ supn ‖Any‖, let
ε > 0 be given. Then by (1), there exists s ∈ X such that ‖A‖ < ‖A[s]‖ + ε.
This implies that there is a positive integer n0 such that

‖A‖ <
∥∥An0y [s]

∥∥ + ε ≤
∥∥An0y

∥∥ + ε ≤ sup
n
‖Any‖+ ε.

Since ε is arbitrary, ‖A‖ ≤ sup
n
‖Any‖. ¤

The following example shows that for a matrix A over C(X), the finiteness
of supt∈X ‖A[t]‖ does not necessarily imply the boundedness of A.

Example 2.3. Let X = [0, 1] and let A be the matrix whose the first column
is the sequence f〈2〉 given in Example 1.1 and all other columns 0. Then
supt∈X ‖A[t]‖ ≤ 1, but A does not define a linear operator on l2(C([0, 1]))
since Ax = f〈2〉, where x = {1, 0, 0, 0, . . .}, does not belong to l2(C([0, 1])).

Lemma 2.4. If A is a matrix with entries from C(X) and the set {‖Any‖ :
n ∈ N} is bounded, then Af is a sequence in C(X) for all f ∈ l2(C(X)).
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Proof. Let M = supn∈N ‖Any‖ and f = {fk}∞k=1 ∈ l2(C(X)). For any n >
m ∈ N, we let f[m,n] := {0, 0, . . . , 0, fm, fm+1, . . . , fn, 0, 0, . . .}, clearly, f[m,n] ∈
l2(C(X)). Let j ∈ N and ε > 0. Then there exists a positive integer N such
that ∥∥∥∥∥

n∑

k=m

|fk|2
∥∥∥∥∥

C(X)

<
( ε

M

)2

for all n > m > N.

So, if n > m > max{j,N}, we get that
∥∥∥∥∥

n∑

k=m

ajkfk

∥∥∥∥∥
C(X)

= sup
t∈X

∣∣∣∣∣
n∑

k=m

ajk(t)fk(t)

∣∣∣∣∣ ≤
∥∥Anyf[m,n]

∥∥
2

≤ ‖Any‖
∥∥f[m,n]

∥∥
2
≤ M

∥∥∥∥∥
n∑

k=m

|fk|2
∥∥∥∥∥

1
2

C(X)

< M
( ε

M

)
= ε.

Hence {∑n
k=1 ajkfk}∞n=1

is a Cauchy sequence in C(X), so it is convergent. ¤

Remark 2.5. If X is a singleton, then the assumption of the above lemma
implies that A ∈ B(l2(C(X))). This is not true in general. Indeed, from
Example 2.3, we also have by Proposition 2.2(1) that ‖Any‖ ≤ 1 for all n, but
A does not belong to B(l2(C(X))). The following proposition tells us when
the boundedness of the set {‖Any‖ : n ∈ N}, which is clearly equivalent to the
finiteness of supt∈X ‖A[t]‖, implies the boundedness of the matrix A.

Proposition 2.6. Suppose that A is a matrix over C(X) with A[t] ∈ B(l2) for
all t ∈ X and the function t 7→ A[t] from X into B(l2) is continuous. Then
A ∈ B(l2(C(X))).

Proof. Since the function t 7→ A[t] is continuous and X is compact,
supt∈X ‖A[t]‖ < ∞. Let M = supt∈X ‖A[t]‖. Then for each n, ‖Any [t]‖ ≤
‖A[t]‖ ≤ M for all t. Thus, by the Proposition 2.2(1) and Lemma 2.4, Af
is a sequence in C(X) for all f ∈ l2(C(X)). We now want to show that
Af ∈ l2(C(X)) for all f ∈ l2(C(X)). Let f ∈ l2(C(X)). Then by Proposi-
tion 1.2, the function t 7→ f [t] from X into l2 is continuous. For each t ∈ X, we
have A[t] ∈ B(l2). So Af [t] = A[t]f [t] ∈ l2 for all t. It follows that the function
t 7→ Af [t] from X into l2 is well defined. For any s, t ∈ X, we have

‖Af [s]−Af [t]‖2 = ‖A[s]f [s]−A[t]f [t]‖2
≤ ‖A[s]f [s]−A[s]f [t]‖2 + ‖A[s]f [t]−A[t]f [t]‖2
≤ ‖A[s]‖ ‖f [s]− f [t]‖2 + ‖A[s]−A[t]‖ ‖f [t]‖2
≤ M ‖f [s]− f [t]‖2 + ‖A[s]−A[t]‖ ‖f‖2 .

Hence, by the continuity of the functions t 7→ A[t] and t 7→ f [t], we obtain
that the function t 7→ Af [t] is continuous. So, by Proposition 1.2, Af ∈
l2(C(X)). ¤
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Theorem 2.7. B(l2(C(X))) equipped with the operator norm is a Banach
space. Furthermore, B(l2(C(X))) contains the identity operator, and for A =
[aji], B = [aik] ∈ B(l2(C(X))), the matrix

AB :=

[ ∞∑

i=1

ajibik

]

belongs to B(l2(C(X))) and (AB)f = A(Bf) for all f ∈ l2(C(X)). In other
words, B(l2(C(X))) is a Banach subalgebra with identity of the Banach algebra
of all bounded linear operators on l2(C(X)).

Proof. Let {An = [a(n)
jk ]}∞n=1 be a Cauchy sequence in B(l2(C(X))). By Propo-

sition 2.2(1), we have for each (j, k) ∈ N× N and t ∈ X that

(∗)
∣∣∣a(n)

jk (t)− a
(m)
jk (t)

∣∣∣ ≤ ‖An[t]−Am[t]‖ ≤ ‖An −Am‖ for all n,m.

Thus, for any (j, k),
∥∥∥a

(n)
jk − a

(m)
jk

∥∥∥
C(X)

≤ ‖An −Am‖ for all n,m. So {a(n)
jk }∞n=1

is a Cauchy sequence in C(X) for all (j, k). Hence, by completeness of C(X),
there exists ajk ∈ C(X) such that a

(n)
jk → ajk as n → ∞. Put A = [ajk]. We

will show that A ∈ B(l2(C(X))) and An → A as n → ∞. Let ν ∈ N and
x = {ξk}∞k=1 ∈ l2 with ‖x‖2 ≤ 1. Let M = supn ‖An‖. Then for each t ∈ X,

‖Aνy [t]x‖22 =
ν∑

j=1

∣∣∣∣∣
ν∑

k=1

ajk(t)ξk

∣∣∣∣∣

2

≤ 4
ν∑

j=1

∣∣∣∣∣
ν∑

k=1

(
a
(n)
jk (t)− ajk(t)

)
ξk

∣∣∣∣∣

2

+ 4M2 for all n.

By taking the limit as n →∞, we get ‖Aνy [t]x‖ ≤ 2M for all t. Thus ‖Aνy [t]‖ ≤
2M for all t. It follows from Proposition 2.2(1) that ‖Aνy‖ ≤ 2M for all ν.
Hence, by Lemma 2.4, Af is a sequence in C(X) for all f ∈ l2(C(X)). Let
ε > 0 be given. Since {An}∞n=1 is a Cauchy sequence, there exists a positive
integer N such that ‖An −Am‖ < ε

2 for all n, m ≥ N . By (∗), we also have
that {An[t]}∞n=1 is a Cauchy sequence in B(l2) for all t. Hence, for each t, there
exists B[t] = [bjk(t)] ∈ B(l2) such that An[t] → B[t] as n →∞. For each (j, k),
we have for every t that |a(n)

jk (t) − bjk(t)| ≤ ‖An[t]−B[t]‖ → 0 as n → ∞. It
follows that A[t] = B[t] for all t. Let f = {fk}∞k=1 ∈ l2(C(X)) with ‖f‖2 ≤ 1.
Then

sup
t∈X

‖(An[t]−Am[t])f [t]‖2 = ‖(An −Am)f‖2 ≤ ‖An −Am‖
<

ε

2
for all n,m ≥ N.

By taking the limit as m →∞, we get

(∗∗) ‖(An −A)f‖2 ≤
ε

2
for all n ≥ N.
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This gives us that Af ∈ lb2(C(X)) and Anf → Af in lb2(C(X)). Since An ∈
B(l2(C(X))) for all n, Anf ∈ l2(C(X)) by closedness of lp(C(X)) in lbp(C(X)).
Hence Af ∈ l2(C(X)). Thus A ∈ B(l2(C(X))). Since (∗∗) holds for arbitrary
f ∈ l2(C(X)), ‖An −A‖ < ε for all n ≥ N . Consequently, An → A as n →∞.

It is obvious that the linear operator defined by the matrix with entries in
the main diagonal 1 and all other entries 0 is exactly the identity operator
on l2(C(X)). Let A = [aji], B = [bik] ∈ B(l2(C(X))). Then for each k,
{∑∞

i=1 ajibik}∞j=1
= A(Bek) ∈ l2(C(X)), where ek is the sequence with kth

coordinate 1 and all other coordinates 0. Thus the series
∑∞

i=1 ajibik converges
in C(X) for all (j, k). So the matrix AB = [

∑∞
i=1 ajibik] is well defined. We

will show that AB defines a linear operator on l2(C(X)) and (AB)f = A(Bf)
for all f ∈ l2(C(X)). Let f = {fk}∞k=1 ∈ l2(C(X)). Then we have for every n
that

‖(AB)nyf‖2 = sup
t∈X




n∑

j=1

∣∣∣∣∣
n∑

k=1

∞∑

i=1

aji(t)bik(t)fk(t)

∣∣∣∣∣

2



1/2

= sup
t∈X




n∑

j=1

∣∣∣∣∣
∞∑

i=1

n∑

k=1

aji(t)bik(t)fk(t)

∣∣∣∣∣

2



1/2

= ‖Any (Bfny)‖2 ≤ ‖Any‖ ‖B‖ ‖fny‖2 ≤ ‖A‖ ‖B‖ ‖f‖2 .

It follows that ‖(AB)ny‖ ≤ ‖A‖ ‖B‖ for all n. Hence, by Lemma 2.4, we
obtain that (AB)f is a sequence in C(X). Since A[t] and B[t] belong to B(l2)
for all t, (AB)[t]f [t] = A[t](B[t]f [t]). This implies that (AB)f = A(B(f)), so
(AB)f ∈ l2(C(X)). The proof is complete. ¤

For A ∈ B(l2(C(X))), we have by Proposition 2.2(1) that A[t] ∈ B(l2) for
all t ∈ X. So the function cA : X → B(l2) defined by cA(t) = A[t] for all t ∈ X
is well defined. Let Bc(l2(C(X))) be the set of matrices A in B(l2(C(X))) such
that the function cA is continuous. For the case where X is a singleton, we
have that Bc(l2(C(X))) = B(l2(C(X))) = B(l2).

Proposition 2.8. The inclusion Bc(l2(C(X))) ⊆ B(l2(C(X))) can be proper.

Proof. Let X = [0, 1] and A be the matrix with the first row the sequence
f〈2〉 = {fk}∞k=1 defined in Example 1.1 and all other rows 0. Since f〈2〉 ∈
lb2(C(X)), by Theorem 1.3, we get that A ∈ B(l2(C(X))). Let tn = 1 − 1

n

for n = 1, 2, 3, . . .. We have that tn → 1 as n → ∞ and
∑2n

k=n |fk(tn)|2 =(
1− 1

n

)n − (
1− 1

n

)2n+1 → 1
e − 1

e2 as n → ∞. Obviously, A[1] = 0. We
claim that A[tn] does not converge to A[1]. Suppose that A[tn] → A[1] as
n → ∞. Fix 0 < ε < 1

e − 1
e2 , then there exists a positive integer N such that∑2n

k=n |fk(tn)|2 ≤ ‖f〈2〉[tn]‖22 = ‖A[tn]‖2 < ε for all n ≥ N . By letting n →∞,
we obtain that 1

e − 1
e2 ≤ ε, which is a contradiction. ¤

Theorem 2.9. Bc(l2(C(X))) is a Banach subalgebra with identity of B(l2(C(X))).
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Proof. To see that Bc(l2(C(X))) is a Banach space, we will show that it is a
closed subspace of B(l2(C(X))). Let {An}∞n=1 be a sequence in Bc(l2(C(X)))
and A ∈ B(l2(C(X))). Suppose that An → A as n → ∞. We want to show
that A ∈ Bc(l2(C(X))). Let {tα} be a net in X and suppose that tα → t for
some t ∈ X. Let ε > 0 be given. Then there exists a positive integer N such
that ‖AN −A‖ < ε

3 . Since AN ∈ Bc(l2(C(X))), AN [tα] → AN [t]. Hence there
exists γ such that ‖AN [tα]−AN [t]‖ < ε

3 for all α º γ. So, for α º γ,

‖A[tα]−A[t]‖ ≤ ‖AN [tα]−A[tα]‖+ ‖AN [t]−A[t]‖+ ‖AN [tα]−AN [t]‖
<

ε

3
+

ε

3
+

ε

3
= ε.

It follows that A ∈ Bc(l2(C(X))). Therefore Bc(l2(C(X))) is a Banach subspace
of B(l2(C(X))). It is clear that the identity matrix belongs to Bc(l2(C(X))).
For A,B ∈ Bc(l2(C(X))), we have for all t ∈ X that ‖A[t]‖ ≤ ‖A‖, ‖B[t]‖ ≤
‖B‖ and cAB(t) = AB[t] = A[t]B[t] = cA(t)cB(t). Since B(l2) is a Banach
algebra under the composition operation, cAB is continuous. ¤

The following are consequences of Proposition 2.6.

Proposition 2.10. Bc(l2(C(X))) is equal to the set of all matrices A over
C(X) such that A[t] ∈ B(l2) for all t ∈ X and the function t 7→ A[t] from X
into B(l2) is continuous.

Proof. It follows directly from Proposition 2.6. ¤

For A = [ajk] ∈ B(l2(C(X))), we let A∗ = [cjk], where cjk = akj for all j, k.
In the case where X is a singleton, we have that A∗ is exactly the adjoint of A,
so it belongs to B(l2(C(X))). In general, this is not true: for example, consider
the matrix A with the first row the sequence f〈2〉 given in Example 1.1 and
all other rows 0. We have seen from Proposition 2.8 and Example 2.3 that
A ∈ B(l2(C(X))) and A∗ /∈ B(l2(C(X))).

Proposition 2.11. If A ∈ Bc(l2(C(X))), then A∗ ∈ Bc(l2(C(X))).

Proof. It follows immediately from the continuity of the function B 7→ B∗ on
B(l2) and Proposition 2.6. ¤

Corollary 2.12. Bc(l2(C(X))) equipped with the involution A 7→ A∗ is a C∗-
algebra with identity.

Proposition 2.13. Bc(l2(C(X))) is a Banach algebra (without identity) under
the Schur product.

Proof. Let A,B ∈ Bc(l2(C(X))). Then by Schur-Bennett’s theorem [1, 9]:
B(l2) is a Banach algebra under the Schur product, we obtain that the function
cA•B is well defined. Since the functions cA and cB are continuous, and we have
‖A[t]‖ ≤ ‖A‖ and ‖B[t]‖ ≤ ‖B‖ for all t, the function cA•B is continuous. Thus,
by Proposition 2.6, A •B ∈ Bc(l2(C(X))). By Schur-Bennett’s theorem again,
we obtain ‖(A •B)[t]‖ = ‖A[t] •B[t]‖ ≤ ‖A[t]‖ ‖B[t]‖ ≤ ‖A‖ ‖B‖ for all t. It
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follows from Proposition 2.2(1) that ‖A •B‖ ≤ ‖A‖ ‖B‖. So Bc(l2(C(X))) is
a Banach algebra under the Schur product. ¤

We do not however know if B(l2(C(X))) is closed under the Schur product.

3. Schatten classes of matrices in Bc(l2(C(X)))

Let M0 be the set of matrices over C(X) having finitely many nonzero
entries, and K(C(X)) be the closure of M0 in B(l2(C(X))).

Proposition 3.1. K(C(X))  Bc(l2(C(X))).

Proof. It is easy to see that M0 ⊆ Bc(l2(C(X))). Hence, by Theorem 2.9,
K(C(X)) ⊆ Bc(l2(C(X))). Since the identity matrix does not belong to
K(C(X)), the inclusion is proper. ¤
Proposition 3.2. A ∈ K(C(X)) if and only if ‖Any −A‖ → 0 as n →∞.

Proof. Suppose that A ∈ K(C(X)) and let ε > 0. Then there exists B ∈ M0

such that ‖A−B‖ < ε
2 . Let N be a positive integer such that BNy = B. Then

for n ≥ N , Any −B = (A−B)ny . Hence, by Proposition 2.2(2), we have

‖Any −A‖ ≤ ‖A−B‖+ ‖Any −B‖ = ‖A−B‖+ ‖(A−B)ny‖
≤ 2 ‖A−B‖ < ε for all n ≥ N.

The converse is obvious. ¤
Let K be the class of compact operators on l2. If X is a singleton, then

K(C(X)) = K.

Proposition 3.3. K(C(X)) = {A ∈ Bc(l2(C(X))) : A[t] ∈ K for all t ∈ X}.
Proof. Suppose that A ∈ Bc(l2(C(X))) with A[t] ∈ K for all t ∈ X. Let ε > 0
be given. Then by the continuity of the function cA, we get for each t ∈ X that
there exists an open set U(t) in X such that t ∈ U(t) and

‖A[t]−A[s]‖ <
ε

4
for all s ∈ U(t).

Since X is compact, there exist t1, t2, . . . , tm ∈ X such that X = U(t1)∪U(t2)∪
· · · ∪ U(tm). Since A[ti] ∈ K for all i ∈ {1, 2, . . . , m}, there exists, for each i, a
positive integer Ni such that

‖Any [ti]−A[ti]‖ <
ε

4
for all n ≥ Ni.

Put N = max{N1, N2, . . . , Nm} and let s ∈ X. Then there exists i0 ∈
{1, 2, . . . ,m} such that s ∈ U(ti0). Hence if n ≥ N , we have that

‖Any [s]−A[s]‖ ≤ ‖Any [ti0 ]−Any [s]‖+ ‖Any [ti0 ]−A[ti0 ]‖+ ‖A[ti0 ]−A[s]‖

≤ 2 ‖A[ti0 ]−A[s]‖+ ‖Any [ti0 ]−A[ti0 ]‖ <
2ε

4
+

ε

4
=

3ε

4
.

Thus, by Proposition 2.2(1), we obtain that

‖Any −A‖ < ε for all n ≥ N.
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So A ∈ K(C(X)). The reverse inclusion follows immediately from Proposi-
tion 3.1 and Proposition 2.2(1). The proof is complete. ¤

Corollary 3.4. K(C(X)) is a proper closed ideal of Bc(l2(C(X))).

Proof. If A ∈ K(C(X)) and B ∈ Bc(l2(C(X))), then AB[t] and BA[t] are
elements of K for all t. Hence, by proposition above, both AB and BA belong
to K(C(X)). Consequently, K(C(X)) is an ideal of Bc(l2(C(X))). ¤

The following example shows us that K(C(X)) may not be an ideal of
B(l2(C(X))).

Example 3.5. Let X = [0, 1], let A be the matrix whose (1, 1) entry is 1 and
all other entries 0, and let B be the matrix with the first row the sequence f〈2〉
given in Example 1.1 and all other rows 0. Clearly, AB = B. We have seen
from Proposition 2.8 that B ∈ B(l2(C([0, 1]))) \ Bc(l2(C([0, 1]))).

If A ∈ K(C(X)), then A[t] ∈ K for all t ∈ X. For each t ∈ X, let
{sn(A[t])}∞n=1 be the sequence of singular values of A[t]. For each n ∈ N,
let s̃n(A) : X → [0,∞) be the function defined by

s̃n(A)(t) = sn(A[t]) for all t ∈ X.

Theorem 3.6. For A ∈ K(C(X)), the function s̃n(A) is continuous for all n.
Furthermore, s̃1(A)(t) ≥ s̃2(A)(t) ≥ · · · ≥ 0 for all t ∈ X and s̃n(A) → 0 as
n →∞ in C(X).

Proof. Let A ∈ K(C(X)). For each n ∈ N, we defined a function fn : K →
[0,∞) by fn(B) = sn(B) for all B ∈ K. Clearly, s̃n(A) = fncA for all n,
hence, by Proposition 3.1, the continuity of s̃n(A) will be proved once we can
show that fn is continuous. The continuity of fn follows directly from the fact
that |sn(B) − sn(C)| ≤ ‖B − C‖ for all B, C ∈ K. It is clear that for every
t ∈ X, s̃1(A)(t) ≥ s̃2(A)(t) ≥ · · · ≥ 0. Since X is compact and s̃n(A)(t) → 0
as n →∞ for all t ∈ X, ‖s̃n(A)‖C(X) → 0 as n →∞. ¤

For 1 ≤ p < ∞, we define three classes of matrices in K(C(X)) as follows:

Cb
p(C(X)) =

{
A ∈ K(C(X)) : {s̃n(A)}∞n=1 ∈ lbp(C(X))

}
;

Cp(C(X)) = {A ∈ K(C(X)) : {s̃n(A)}∞n=1 ∈ lp(C(X))} ;

Cc
p(C(X)) = {A ∈ K(C(X)) : the function t 7→ A[t] from X into Cp

is continuous}.
It is clear that A ∈ Cb

p(C(X)) if and only if A ∈ K(C(X)) and supt∈X ‖|A[t]|‖p <
∞.

Proposition 3.7. Cc
p(C(X)) ⊆ Cp(C(X)) ⊆ Cb

p(C(X)).
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Proof. It is obvious that both Cc
p(C(X)) and Cp(C(X)) are subsets of Cb

p(C(X)).
We will show that Cc

p(C(X)) ⊆ Cp(C(X)). Suppose that A ∈ Cc
p(C(X)). Then

the function t 7→ A[t] from X into Cp is continuous. This implies that the
function t 7→ ‖|A[t]|‖p = ‖{s̃k(A)(t)}∞k=1‖p is continuous. It follows from Propo-
sition 1.2 that {s̃k(A)}∞k=1 ∈ lp(C(X)), so A ∈ Cp(C(X)). ¤

The following example shows that the inclusion Cp(C(X)) ⊆ Cb
p(C(X)) can

be proper. So the inclusion Cc
p(C(X)) ⊆ Cb

p(C(X)) can also be proper. For the
space lp(C(X)), we have that f ∈ lp(C(X)) if and only if the function t 7→ f [t]
from X into lp is continuous. We expect to have a similar characterization
for Cp(C(X)), i.e., A ∈ Cp(C(X)) if and only if the function t 7→ A[t] from X
into Cp is continuous (or equivalently, Cp(C(X)) = Cc

p(C(X))). Now, we have
Cc

p(C(X)) ⊆ Cp(C(X)), but we do not know if we have equality or an example
of proper inclusion.

Example 3.8. Cp(C(X))  Cb
p(C(X)). Let X = [0, 1] and let A be the matrix

with the main diagonal the sequence f〈p〉 = {fk}∞k=1 given in Example 1.1 and
all other entries 0. It is easy to see that A ∈ B(l2(C([0, 1]))). Since fk → 0 as
n →∞ in C(X), A ∈ K(C([0, 1])). It is clear that s̃k(A) = fk for all k. Hence
A ∈ Cb

p(C([0, 1])) \ Cp(C([0, 1])).

It is easy to see that Cb
p(C(X)) and Cc

p(C(X)) are linear spaces. For the case
where X is infinite, we do not know if Cp(C(X)) is closed under addition.

Theorem 3.9. Cb
p(C(X)) and Cc

p(C(X)) equipped with the norm

‖|A|‖p := sup
t∈X

‖|A[t]|‖p

are Banach spaces.

Proof. Let {An}∞n=1 be a Cauchy sequence in Cb
p(C(X)). Note that for any

B ∈ Cp, ‖B‖ = s1(B) ≤ ‖|B|‖p. This gives us that {An}∞n=1 is also a Cauchy
sequence in K(C(X)). So there exists A in K(C(X)) such that An → A in
K(C(X)). We will show that A ∈ Cb

p(C(X)) and An → A as n → ∞. Since
{An}∞n=1 is a Cauchy sequence in Cb

p(C(X)), {An[t]}∞n=1 is a Cauchy sequence
in Cp for all t ∈ X. Thus, for each t, we have by completeness of Cp that there
exists At in Cp such that An[t] → At as n →∞. From this, we have An[t] → At

in K for all t. Since An → A in K(C(X)), An[t] → A[t] in K for all t. Hence
A[t] = At for all t. Let ε > 0 be given. Then there exists a positive integer N
such that for any t, ‖|An[t]−Am[t]|‖p ≤ ‖|An −Am|‖p ≤ ε

2 for all n,m ≥ N .
By taking the limit as m →∞, we obtain for each t that ‖|An[t]−A[t]|‖p ≤ ε

2

for all n ≥ N . It follows that ‖|An −A|‖p = supt∈X ‖|An[t]−A[t]|‖p ≤ ε
2 < ε

for all n ≥ N . This gives us that A ∈ Cb
p(C(X)) and An → A as n → ∞.

Accordingly, Cb
p(C(X)) is a Banach space.

To see that Cc
p(C(X)) is a Banach space, we will show that it is a closed

subspace of Cb
p(C(X)). Let {An}∞n=1 be a sequence in Cc

p(C(X)) and A ∈
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Cb
p(C(X)). Suppose that An → A as n → ∞. Let {tα} be a net in X such

that tα → t for some t ∈ X. We want to show that ‖A[tα]−A[t]‖ → 0. Let
ε > 0. Then there exists a positive integer N such that ‖|AN −A|‖p < ε

3 . Since
AN ∈ Cc

p(C(X)), there is γ such that ‖|AN [tα]−AN [t]|‖p < ε
3 for all α º γ. So

‖|A[tα]−A[t]|‖p ≤ ‖|AN [tα]−A[tα]|‖p + ‖|AN [t]−A[t]|‖p + ‖|AN [tα]−AN [t]|‖p

<
ε

3
+

ε

3
+

ε

3
= ε for all α º γ.

The proof is complete. ¤
Proposition 3.10. Cb

p(C(X)) and Cc
p(C(X)) are ideals of Bc(l2(C(X))).

Proof. We will first show that Cb
p(C(X)) is an ideal of Bc(l2(C(X))). Let

A ∈ Cb
p(C(X)) and B ∈ Bc(l2(C(X))). Then by Corollary 3.4, both AB and

BA belong to K(C(X)). Since A[t] ∈ Cp and B[t] ∈ B(l2) for all t ∈ X,
‖|(AB)[t]|‖p ≤ ‖|A[t]|‖p ‖B[t]‖ ≤ ‖|A|‖p ‖B‖. Similarly, we have ‖|(BA)[t]|‖p ≤
‖|A|‖p ‖B‖ for all t. This implies that both AB and BA belong to Cb

p(C(X)),
so Cb

p(C(X)) is an ideal of Bc(l2(C(X))).
To show that Cc

p(C(X)) is an ideal of Bc(l2(C(X))), suppose that A ∈
Cc

p(C(X)) and B ∈ Bc(l2(C(X))). We will show that AB ∈ Cc
p(C(X)). By

the fact above, we have AB ∈ Cb
p(C(X)). For any s, t ∈ X, we have

‖|AB[s]−AB[t]|‖p = ‖|A[s]B[s]−A[t]B[t]|‖p

≤ ‖|A[s]B[s]−A[s]B[t]|‖p + ‖|A[s]B[t]−A[t]B[t]|‖p

≤ ‖|A[s]|‖p ‖B[s]−B[t]‖+ ‖A[s]−A[t]‖p ‖B[t]‖
≤ ‖|A|‖p ‖B[s]−B[t]‖+ ‖A[s]−A[t]‖p ‖B‖ .

So, by the assumption, the function t 7→ AB[t] is continuous. This means
that AB ∈ Cc

p(C(X)). By using a similar argument, we also have that BA ∈
Cc

p(C(X)). It follows that Cc
p(C(X)) is an ideal of Bc(l2(C(X))). ¤
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