• 제목/요약/키워드: Banach function algebra

검색결과 30건 처리시간 0.025초

ULTRASEPARABILITY OF CERTAIN FUNCTION ALGEBRAS

  • Hwang, Sun-Wook
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.299-302
    • /
    • 1994
  • Throughout this paper, let X be a compact Hausdorff space, and let C(X) (resp. $C_{R}$ /(X)) be the complex (resp. real) Banach algebra of all continuous complex-valued (resp. real-valued) functions on X with the pointwise operations and the supremum norm x. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.(omitted)

  • PDF

ON UNIFORMLY ULTRASEPARATING FAMILY OF FUNCTION ALGEBRAS

  • Hwang, Sunwook
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.125-134
    • /
    • 1993
  • Let X be a compact Hausdorff space, and let C(X) (resp. $C_{R}$(X)) be the complex (resp. real) Banach algebra of all continuous complex-valued(resp. real-valued) functions on X with the pointwise operations and the supremum norm x. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.s.

  • PDF

PROJECTIVE LIMIT OF A SEQUENCE OF BANACH FUNCTION ALGEBRAS AS A FRECHET FUNCTION ALGEBRA

  • Sady. F.
    • 대한수학회보
    • /
    • 제39권2호
    • /
    • pp.259-267
    • /
    • 2002
  • Let X be a hemicompact space with ($K_{n}$) as an admissible exhaustion, and for each n $\in$ N, $A_{n}$ a Banach function algebra on $K_{n}$ with respect to $\parallel.\parallel_n$ such that $A_{n+1}\midK_{n}$$\subsetA_n$ and${\parallel}f{\mid}K_n{\parallel}_n{\leq}{\parallel}f{\parallel}_{n+1}$ for all f$\in$$A_{n+1}$, We consider the subalgebra A = { f $\in$ C(X) : $\forall_n\;{\epsilon}\;\mathbb{N}$ of C(X) as a frechet function algebra and give a result related to its spectrum when each $A_{n}$ is natural. We also show that if X is moreover noncompact, then any closed subalgebra of A cannot be topologized as a regular Frechet Q-algebra. As an application, the Lipschitzalgebra of infinitely differentiable functions is considered.d.

APPROXIMATE IDENTITY OF CONVOLUTION BANACH ALGEBRAS

  • Han, Hyuk
    • 충청수학회지
    • /
    • 제33권4호
    • /
    • pp.497-504
    • /
    • 2020
  • A weight ω on the positive half real line [0, ∞) is a positive continuous function such that ω(s + t) ≤ ω(s)ω(t), for all s, t ∈ [0, ∞), and ω(0) = 1. The weighted convolution Banach algebra L1(ω) is the algebra of all equivalence classes of Lebesgue measurable functions f such that ‖f‖ = ∫0∞|f(t)|ω(t)dt < ∞, under pointwise addition, scalar multiplication of functions, and the convolution product (f ⁎ g)(t) = ∫0t f(t - s)g(s)ds. We give a sufficient condition on a weight function ω(t) in order that L1(ω) has a bounded approximate identity.

CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ON A BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.73-93
    • /
    • 2004
  • In [10], Chang and Skoug used a generalized Brownian motion process to define a generalized analytic Feynman integral and a generalized analytic Fourier-Feynman transform. In this paper we define the conditional generalized Fourier-Feynman transform and conditional generalized convolution product on function space. We then establish some relationships between the conditional generalized Fourier-Feynman transform and conditional generalized convolution product for functionals on function space that belonging to a Banach algebra.

A FRESNEL TYPE CLASS ON FUNCTION SPACE

  • Chang, Seung-Jun;Choi, Jae-Gil;Lee, Sang-Deok
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권1호
    • /
    • pp.107-119
    • /
    • 2009
  • In this paper we define a Banach algebra on very general function space induced by a generalized Brownian motion process rather than on Wiener space, but the Banach algebra can be considered as a generalization of Fresnel class defined on Wiener space. We then show that several interesting functions in quantum mechanic are elements of the class.

  • PDF

BANACH FUNCTION ALGEBRAS OF n-TIMES CONTINUOUSLY DIFFERENTIABLE FUNCTIONS ON Rd VANISHING AT INFINITY AND THEIR BSE-EXTENSIONS

  • Inoue, Jyunji;Takahasi, Sin-Ei
    • 대한수학회지
    • /
    • 제56권5호
    • /
    • pp.1333-1354
    • /
    • 2019
  • In authors' paper in 2007, it was shown that the BSE-extension of $C^1_0(R)$, the algebra of continuously differentiable functions f on the real number space R such that f and df /dx vanish at infinity, is the Lipschitz algebra $Lip_1(R)$. This paper extends this result to the case of $C^n_0(R^d)$ and $C^{n-1,1}_b(R^d)$, where n and d represent arbitrary natural numbers. Here $C^n_0(R^d)$ is the space of all n-times continuously differentiable functions f on $R^d$ whose k-times derivatives are vanishing at infinity for k = 0, ${\cdots}$, n, and $C^{n-1,1}_b(R^d)$ is the space of all (n - 1)-times continuously differentiable functions on $R^d$ whose k-times derivatives are bounded for k = 0, ${\cdots}$, n - 1, and (n - 1)-times derivatives are Lipschitz. As a byproduct of our investigation we obtain an important result that $C^{n-1,1}_b(R^d)$ has a predual.

CONDITIONAL FIRST VARIATION OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • CHO, DONG HYUN
    • 대한수학회지
    • /
    • 제42권5호
    • /
    • pp.1031-1056
    • /
    • 2005
  • In this paper, we define the conditional first variation over Wiener paths in abstract Wiener space and investigate its properties. Using these properties, we also investigate relationships among first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transforms of functions in a Banach algebra which is equivalent to the Fresnel class. Finally, we provide another method evaluating the Fourier-Feynman transform for the product of a function in the Banach algebra with n linear factors.

CONTINUITY OF AN APPROXIMATE JORDAN MAPPING

  • Lee, Young-Whan
    • 대한수학회논문집
    • /
    • 제20권3호
    • /
    • pp.505-509
    • /
    • 2005
  • We show that every $\varepsilon-approximate$ Jordan functional on a Banach algebra A is continuous. From this result we obtain that every $\varepsilon-approximate$ Jordan mapping from A into a continuous function space C(S) is continuous and it's norm less than or equal $1+\varepsilon$ where S is a compact Hausdorff space. This is a generalization of Jarosz's result [3, Proposition 5.5].

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON THE BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • 대한수학회논문집
    • /
    • 제19권1호
    • /
    • pp.93-111
    • /
    • 2004
  • In this paper, we use a generalized Brownian motion process to define a generalized Feynman integral and a generalized Fourier-Feynman transform. We also define the concepts of the multiple Lp analytic generalized Fourier-Feynman transform and the generalized convolution product of functional on function space $C_{a,\;b}[0,\;T]$. We then verify the existence of the multiple $L_{p}$ analytic generalized Fourier-Feynman transform for functional on function space that belong to a Banach algebra $S({L_{a,\;b}}^{2}[0, T])$. Finally we establish some relationships between the multiple $L_{p}$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $S({L_{a,\;b}}^{2}[0, T])$.