MULTIPLE L_p ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON THE BANACH ALGEBRA

SEUNG JUN CHANG AND JAE GIL CHOI

ABSTRACT. In this paper, we use a generalized Brownian motion process to define a generalized Feynman integral and a generalized Fourier-Feynman transform. We also define the concepts of the multiple L_p analytic generalized Fourier-Feynman transform and the generalized convolution product of functionals on function space $C_{a,b}[0,T]$. We then verify the existence of the multiple L_p analytic generalized Fourier-Feynman transform for functionals on function space that belong to a Banach algebra $\mathcal{S}(L^2_{a,b}[0,T])$. Finally we establish some relationships between the multiple L_p analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $\mathcal{S}(L^2_{a,b}[0,T])$.

1. Introduction

The concept of L_1 analytic Fourier-Feynman transform (FFT) was introduced by Brue in [2]. In [3], Cameron and Storvick introduced the concept of an L_2 analytic FFT on Wiener space. In [13], Johnson and Skoug developed an L_p analytic FFT theory for $1 \leq p \leq 2$ which extended the results in [2, 3] and gave various relationships between the L_1 and L_2 theories. In [9]-[11], Huffman, Park and Skoug developed an L_p analytic FFT theory on certain classes of functionals defined on Wiener space and they defined a convolution product(CP) of two functionals on Wiener space and then found several interesting properties for the FFT

Received January 22, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 60J65,28C20.

Key words and phrases: generalized Brownian motion process, generalized analytic Feynman integral, generalized analytic Feynman transform, generalized convolution product, multiple L_p analytic generalized Fourier-Feynman transform.

The present research was conducted by the research fund of Dankook University in 2003.

and the CP on Wiener space. In [1], Ahn investigated the L_1 analytic FFT theory on the Fresnel class of an abstract Wiener space. In [5], Chang, Song, and Yoo studied the analytic FFT and the first variation on abstract Wiener space and the Fresnel class $\mathcal{F}(B)$.

The Wiener process is free of drift and is stationary in time while the stochastic process used in this paper is nonstationary in time, is subject to a drift a(t), and can be used to explain the position of the Ornstein-Uhlenbeck process in an external force field [15]. In [6], Chang and Chung studied the conditional function space integral and in [7], Chang and Skoug studied the L_p analytic generalized Fourier-Feynman transform(GFFT) and first variation on function space $C_{a,b}[0,T]$. Recently, in [8], Chang, Choi and Skoug obtained the integration by parts formulas for the generalized Feynman integral and the L_1 and L_2 analytic GFFT on function space.

In Section 2 of this paper, we introduce the basic concepts and the notations for our research. In Section 3, we study the L_p analytic GFFT and the generalized CP(GCP). In Section 4, we investigate the essential properties for the multiple L_p analytic GFFT and the GCP on a function space $C_{a,b}[0,T]$. Finally, we establish some relationships between the multiple L_p analytic GFFT and the GCP for functionals in $\mathcal{S}(L_{a,b}^2[0,T])$.

2. Definitions and preliminaries

Let D = [0,T] and let (Ω, \mathcal{B}, P) be a probability measure space. A real valued stochastic process Y on (Ω, \mathcal{B}, P) and D is called a generalized Brownian motion process if $Y(0,\omega)=0$ almost everywhere and for $0 = t_0 < t_1 < \cdots < t_n \leq T$, the n-dimensional random vector $(Y(t_1,\omega),\cdots,Y(t_n,\omega))$ is normally distributed with the density function

(2.1)
$$K(\vec{t}, \vec{\eta}) = \left((2\pi)^n \prod_{j=1}^n (b(t_j) - b(t_{j-1})) \right)^{-1/2} \\ \cdot \exp \left\{ -\frac{1}{2} \sum_{j=1}^n \frac{((\eta_j - a(t_j)) - (\eta_{j-1} - a(t_{j-1})))^2}{b(t_j) - b(t_{j-1})} \right\}$$

where $\vec{\eta} = (\eta_1, \dots, \eta_n)$, $\eta_0 = 0$, $\vec{t} = (t_1, \dots, t_n)$, a(t) is an absolutely continuous real-valued function on [0, T] with a(0) = 0, $a'(t) \in L^2[0, T]$, and b(t) is a strictly increasing, continuously differentiable real-valued function with b(0) = 0 and b'(s) > 0 for each $s \in [0, T]$.

As explained in [18, pp.18–20], Y induces a probability measure μ on the measurable space $(\mathbb{R}^D, \mathcal{B}^D)$ where \mathbb{R}^D is the space of all real valued functions x(t), $t \in D$, and \mathcal{B}^D is the smallest σ -algebra of subsets of \mathbb{R}^D with respect to which all the coordinate evaluation maps $e_t(x) = x(t)$ defined on \mathbb{R}^D are measurable. The triple $(\mathbb{R}^D, \mathcal{B}^D, \mu)$ is a probability measure space. This measure space is called the function space induced by the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$.

We note that the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$ is a Gaussian process with mean function a(t) and covariance function $r(s,t) = \min\{b(s),b(t)\}$. By Theorem 14.2 [18, p.187], the probability measure μ induced by Y, taking a separable version, is supported by $C_{a,b}[0,T]$ (which is equivalent to the Banach space of continuous functions x on [0,T] with x(0)=0 under the sup norm). Hence $(C_{a,b}[0,T],\mathcal{B}(C_{a,b}[0,T]),\mu)$ is the function space induced by Y where $\mathcal{B}(C_{a,b}[0,T])$ is the Borel σ -algebra of $C_{a,b}[0,T]$.

A subset B of $C_{a,b}[0,T]$ is said to be scale-invariant measurable [14] provided ρB is $\mathcal{B}(C_{a,b}[0,T])$ -measurable for all $\rho > 0$, and a scale-invariant measurable set N is said to be scale-invariant null set provided $\mu(\rho N) = 0$ for all $\rho > 0$. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.).

Let $L^2_{a,b}[0,T]$ be the Hilbert space of functions on [0,T] which are Lebesgue measurable and square integrable with respect to the Lebesgue Stieltjes measures on [0,T] induced by $a(\cdot)$ and $b(\cdot)$: i.e., (2.2)

$$L^2_{a,b}[0,T] = \left\{ v : \int_0^T v^2(s) db(s) < \infty \text{ and } \int_0^T v^2(s) d|a|(s) < \infty \right\}$$

where |a|(t) denotes the total variation of the function a on the interval [0,t].

For $u, v \in L^2_{a,b}[0,T]$, let

(2.3)
$$(u,v)_{a,b} = \int_0^T u(t)v(t)d[b(t) + |a|(t)].$$

Then $(\cdot,\cdot)_{a,b}$ is an inner product on $L^2_{a,b}[0,T]$ and $\|u\|_{a,b} = \sqrt{(u,u)_{a,b}}$ is a norm on $L^2_{a,b}[0,T]$. In particular note that $\|u\|_{a,b} = 0$ if and only if u(t) = 0 a.e. on [0,T]. Furthermore $(L^2_{a,b}[0,T], \|\cdot\|_{a,b})$ is a separable Hilbert space.

Let $\{\phi_j\}_{j=1}^{\infty}$ be a complete orthonormal set of real-valued functions of bounded variation on [0,T] such that

$$(\phi_j, \phi_k)_{a,b} = \begin{cases} 0, & j \neq k \\ 1, & j = k \end{cases},$$

and for each $v \in L^2_{a,b}[0,T]$, let

(2.4)
$$v_n(t) = \sum_{j=1}^{n} (v, \phi_j)_{a,b} \phi_j(t)$$

for $n=1,2,\cdots$. Then for each $v\in L^2_{a,b}[0,T]$, the Paley-Wiener-Zygmund(PWZ) stochastic integral $\langle v,x\rangle$ is defined by the formula

(2.5)
$$\langle v, x \rangle = \lim_{n \to \infty} \int_0^T v_n(t) dx(t)$$

for all $x \in C_{a,b}[0,T]$ for which the limit exists; one can show that for each $v \in L^2_{a,b}[0,T]$, the PWZ integral $\langle v, x \rangle$ exists for μ -a.e. $x \in C_{a,b}[0,T]$.

We denote the function space integral of a $\mathcal{B}(C_{a,b}[0,T])$ -measurable functional F by

(2.6)
$$E[F] = \int_{C_{a,b}[0,T]} F(x) d\mu(x),$$

whenever the integral exists.

We are now ready to state the definition of the generalized analytic Feynman integral.

DEFINITION 2.1. Let \mathbb{C} denote the complex numbers. Let $\mathbb{C}_+ = \{\lambda \in \mathbb{C} : \operatorname{Re}\lambda > 0\}$ and $\tilde{\mathbb{C}}_+ = \{\lambda \in \mathbb{C} : \lambda \neq 0 \text{ and } \operatorname{Re}\lambda \geq 0\}$. Let $F: C_{a,b}[0,T] \longrightarrow \mathbb{C}$ be such that for each $\lambda > 0$, the function space integral

$$J(\lambda) = \int_{C_{a,b}[0,T]} F(\lambda^{-\frac{1}{2}}x) d\mu(x)$$

exists for all $\lambda > 0$. If there exists a function $J^*(\lambda)$ analytic in \mathbb{C}_+ such that $J^*(\lambda) = J(\lambda)$ for all $\lambda > 0$, then $J^*(\lambda)$ is defined to be the analytic function space integral of F over $C_{a,b}[0,T]$ with parameter λ , and for $\lambda \in \mathbb{C}_+$ we write

(2.7)
$$E^{\mathrm{an}_{\lambda}}[F] \equiv E_x^{\mathrm{an}_{\lambda}}[F(x)] = J^*(\lambda).$$

Let $q \neq 0$ be a real number and let F be a functional such that $E^{\operatorname{an}_{\lambda}}[F]$ exists for all $\lambda \in \mathbb{C}_+$. If the following limit exists, we call it the generalized analytic Feynman integral of F over $C_{a,b}[0,T]$ with parameter q and we write

(2.8)
$$E^{\operatorname{anf}_q}[F] \equiv E_x^{\operatorname{anf}_q}[F(x)] = \lim_{\lambda \to -iq} E^{\operatorname{an}_\lambda}[F]$$

where λ approaches -iq through \mathbb{C}_+ .

Next we state the definitions of the analytic GFFT and the GCP.

DEFINITION 2.2. For $\lambda \in \mathbb{C}_+$ and $y \in C_{a,b}[0,T]$, let

(2.9)
$$T_{\lambda}(F)(y) = E_x^{\mathrm{an}_{\lambda}}[F(y+x)].$$

In the standard Fourier theory, the integrals involved are often interpreted in the mean; a similar concept is useful in the FFT theory [13]. Let $p \in (1,2]$ and let p and p' be related by 1/p+1/p'=1. Let $\{H_n\}$ and H be scale-invariant measurable functionals such that for each $\rho > 0$,

$$\lim_{n\to\infty} E[|H_n(\rho y) - H(\rho y)|^{p'}] = 0.$$

Then we write

$$H \approx \text{l.i.m.}_{n \to \infty} H_n$$

and we call H the scale-invariant limit in the mean of order p'. A similar definition is understood when n is replaced by the continuously varying parameter λ .

We are ready to state the definition of the L_p analytic GFFT.

DEFINITION 2.3. Let q be a nonzero real number and let F be a measurable functional on $C_{a,b}[0,T]$. For $p \in (1,2]$, we define the L_p analytic GFFT, $T_q^{(p)}(F)$ of F, by the formula $(\lambda \in \mathbb{C}_+)$

(2.10)
$$T_a^{(p)}(F)(y) = \text{l.i.m.}_{\lambda \to -iq} T_{\lambda}(F)(y)$$

if it exists. We define the L_1 analytic GFFT, $T_q^{(1)}(F)$ of F, by the formula $(\lambda \in \mathbb{C}_+)$

(2.11)
$$T_q^{(1)}(F)(y) = \lim_{\lambda \to -iq} T_{\lambda}(F)(y)$$

if it exists.

We note that for $1 \leq p \leq 2$, $T_q^{(p)}(F)$ is defined only s-a.e.. We also note that if $T_q^{(p)}(F)$ exists and if $F \approx G$, then $T_q^{(p)}(G)$ exists and $T_q^{(p)}(G) \approx T_q^{(p)}(F)$.

DEFINITION 2.4. Let F and G be measurable functionals on $C_{a,b}$ [0,T]. For $\lambda \in \tilde{\mathbb{C}}_+$, we define their GCP $(F*G)_{\lambda}$ (if it exists) by (2.12)

$$(F * G)_{\lambda}(y) = \begin{cases} E_x^{\mathrm{an}_{\lambda}} [F(\frac{y+x}{\sqrt{2}})G(\frac{y-x}{\sqrt{2}})], & \lambda \in \mathbb{C}_+ \\ E_x^{\mathrm{anf}_q} [F(\frac{y+x}{\sqrt{2}})G(\frac{y-x}{\sqrt{2}})], & \lambda = -iq, \ q \in \mathbb{R}, \ q \neq 0. \end{cases}$$

REMARK 2.1. (1) When $\lambda = -iq$, we denote $(F * G)_{\lambda}$ by $(F * G)_q$. (2) For any real $q \neq 0$, we briefly describe F_q^* and F_q^* of a functional F on $C_{a,b}[0,T]$ as follows:

(2.13)
$$F_q^* = (F * 1)_q$$
 and $F_q^* = (1 * F)_q$.

The following generalized analytic Feynman integral formula is used several times in this paper.

(2.14)
$$E_x[\exp\{i\lambda^{-\frac{1}{2}}\langle v, x\rangle\}] = \exp\left\{-\frac{1}{2\lambda}(v^2, b') + i\lambda^{-\frac{1}{2}}(v, a')\right\}$$

for all $\lambda \in \tilde{\mathbb{C}}_+$ and $v \in L^2_{a,b}[0,T]$, where

(2.15)
$$(v, a') = \int_0^T v(t)a'(t)dt = \int_0^T v(t)da(t)$$

and

(2.16)
$$(v^2, b') = \int_0^T v^2(t)b'(t)dt = \int_0^T v^2(t)db(t).$$

3. Transforms and convolutions

First we give the definition of the Banach algebra $\mathcal{S}(L_{a,b}^2[0,T])$ referred to in Section 1 above.

DEFINITION 3.1. Let $M(L_{a,b}^2[0,T])$ be the space of complex-valued, countably additive (and hence finite) Borel measures on $L_{a,b}^2[0,T]$. The Banach algebra $\mathcal{S}(L_{a,b}^2[0,T])$ consists of those functionals F on $C_{a,b}[0,T]$ expressible in the form

(3.1)
$$F(x) = \int_{L_{a,b}^2[0,T]} \exp\{i\langle u, x\rangle\} df(u)$$

for s-a.e. $x \in C_{a,b}[0,T]$, where the associated measure f is an element of $M(L^2_{a,b}[0,T])$.

REMARK 3.1. (i) When $a(t) \equiv 0$ and b(t) = t on [0, T], $\mathcal{S}(L^2_{a,b}[0, T])$ reduces to the Banach algebra \mathcal{S} introduced by Cameron and Storvick in [4]. For further work on \mathcal{S} , see the references referred to in Section 20.1 of [12].

- (ii) $M(L_{a,b}^2[0,T])$ is a Banach algebra under the total variation norm where convolution is taken as the multiplication.
- (iii) One can show that the correspondence $f \mapsto F$ is injective, carries convolution into pointwise multiplication and that $\mathcal{S}(L^2_{a,b}[0,T])$ is a Banach algebra with norm

$$||F|| = ||f|| = \int_{L^2_{a,b}[0,T]} |df(u)|.$$

In [4], Cameron and Storvick carry out these arguments in detail for the Banach algebra \mathcal{S} .

Remark 3.2. If $a(t) \equiv 0$ on [0,T], then for all $F \in \mathcal{S}(L^2_{a,b}[0,T])$ with associated measure f, the generalized analytic Feynman integral $E^{\inf_q}[F]$ will always exist for all real $q \neq 0$ and be given by the formula

(3.2)
$$E^{\operatorname{anf}_q}[F] = \int_{L^2_{a,b}[0,T]} \exp\bigg\{ -\frac{i(u^2,b')}{2q} \bigg\} df(u).$$

However, for a(t) and b(t) as in Section 2, and proceeding formally using equations (3.1) and (2.14), we see that $E^{\inf_q}[F]$ will be given by the formula

$$(3.3) \quad E^{\inf_q}[F] = \int_{L^2 \setminus [0,T]} \exp\bigg\{ -\frac{i(u^2,b')}{2q} + i\bigg(\frac{i}{q}\bigg)^{\frac{1}{2}}(u,a')\bigg\} df(u)$$

if it exists. But the integral on the right hand-side of (3.3) might not exist if the real part of

$$-\frac{i(u^2,b')}{2q}+i\bigg(\frac{i}{q}\bigg)^{\frac{1}{2}}(u,a')$$

is positive. However

$$\left|\exp\left\{-\frac{i(u^2,b')}{2q}+i\left(\frac{i}{q}\right)^{\frac{1}{2}}(u,a')\right\}\right| = \left\{\begin{array}{l} \exp\{-(2q)^{-1/2}(u,a')\}, & q>0\\ \exp\{(-2q)^{-1/2}(u,a')\}, & q<0 \end{array}\right.$$

and so the generalized analytic Feynman integral $E^{\operatorname{anf}_q}[F]$ will certainly exist provided the associated measure f satisfies the condition

$$(3.4) \qquad \int_{L^2_{a,b}[0,T]} \exp\bigg\{\frac{1}{\sqrt{|2q|}} \int_0^T |u(s)|d|a|(s)\bigg\} |df(u)| < \infty.$$

In our next theorem, we obtain the L_p analytic GFFT $T_q^{(p)}(F)$ of a functional F in $\mathcal{S}(L_{a,b}^2[0,T])$.

THEOREM 3.1. Let q_0 be a nonzero real number and let F be an element of $S(L^2_{a,b}[0,T])$ whose associated measure f satisfies the condition (3.4) above with q replaced with q_0 . Then for all $p \in [1,2]$ and all real q with $|q| \geq |q_0|$, the L_p analytic GFFT of F, $T_q^{(p)}(F)$ exists and is given by the formula (3.5)

$$T_{q}^{(p)}(F)(y) = \int_{L_{a,b}^{2}[0,T]} \exp \left\{ i \langle u, y \rangle - \frac{i}{2q}(u^{2}, b') + i \left(\frac{i}{q}\right)^{\frac{1}{2}}(u, a') \right\} df(u)$$

for s-a.e. $y \in C_{a,b}[0,T]$. Furthermore $T_q^{(p)}(F)$ is an element of $\mathcal{S}(L_{a,b}^2)$ with associated measure ϕ defined by

(3.6)
$$\phi(E) = \int_{E} \exp\left\{-\frac{i}{2q}(u^{2}, b') + i\left(\frac{i}{q}\right)^{\frac{1}{2}}(u, a')\right\} df(u)$$

for $E \in \mathcal{B}(L^2_{a,b}[0,T])$.

PROOF. By (2.9), the Fubini theorem, and (2.14), we have that for all $\lambda > 0$, (3.7)

$$\begin{split} T_{\lambda}(F)(y) &= E_x[F(y+\lambda^{-1/2}x)] \\ &= \int_{L_{a,b}^2[0,T]} E_x[\exp\{i\langle u,y\rangle + i\lambda^{-1/2}\langle u,x\rangle\}] df(u) \\ &= \int_{L_{a,b}^2[0,T]} \exp\left\{i\langle u,y\rangle - \frac{1}{2\lambda}(u^2,b') + \frac{i}{\sqrt{\lambda}}(u,a')\right\} df(u) \end{split}$$

for s-a.e. $y \in C_{a,b}[0,T]$. But the last expression above is analytic throughout \mathbb{C}_+ and is continuous on $\tilde{\mathbb{C}}_+$. Thus the equation (3.5) is

established. Let ϕ be defined by (3.6) for each $E \in \mathcal{B}(L^2_{a,b}[0,T])$. By using (3.4) above, we obtain that

$$(3.8) ||\phi|| \le \int_{L_{a,b}^2[0,T]} \exp\left\{\frac{1}{\sqrt{|2q_0|}} \int_0^T |u(s)|d|a|(s)\right\} |df(u)| < \infty.$$

Hence we have the desired result.

In our next theorem, we obtain the GCP of functionals in $S(L_{a,b}^2[0,T])$.

THEOREM 3.2. Let q_0 be a nonzero real number and let F and G be elements of $\mathcal{S}(L^2_{a,b}[0,T])$ whose associated measures f and g satisfy the condition

$$(3.9) \int_{L^2_{a,b}[0,T]} \exp\bigg\{\frac{1}{\sqrt{|4q_0|}} \int_0^T |u(s)|d|a(s)|\bigg\} \big[|df(u)| + |dg(u)|\big] < \infty.$$

Then their GCP $(F*G)_q$ exists for all $p \in [1,2]$ and all real q with $|q| \ge |q_0|$ and is given by the formula (3.10)

$$(F * G)_{q}(y) = \int_{L_{a,b}^{2}[0,T]} \int_{L_{a,b}^{2}[0,T]} \exp\left\{\frac{i}{\sqrt{2}}\langle u+v,y\rangle\right.$$
$$\left. - \frac{i}{4q}((u-v)^{2},b') + i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u-v,a')\right\} df(u)dg(v)$$

for s-a.e. $y \in C_{a,b}[0,T]$. Furthermore $(F * G)_q$ is an element of $\mathcal{S}(L^2_{a,b}[0,T])$.

PROOF. By using (2.12), the Fubini theorem, and (2.14), we have that for all $\lambda > 0$,

$$(F * G)_{\lambda}(y)$$

$$= E_{x} \left[F \left(\frac{y + \lambda^{-1/2} x}{\sqrt{2}} \right) G \left(\frac{y - \lambda^{-1/2} x}{\sqrt{2}} \right) \right]$$

$$= \int_{L_{a,b}^{2}[0,T]} \int_{L_{a,b}^{2}[0,T]} E_{x} \left[\exp \left\{ \frac{i}{\sqrt{2}} \langle u + v, y \rangle + \frac{i}{\sqrt{2\lambda}} \langle u - v, x \rangle \right\} \right] df(u) dg(v)$$

$$= \int_{L_{a,b}^{2}[0,T]} \int_{L_{a,b}^{2}[0,T]} \exp \left\{ \frac{i}{\sqrt{2}} \langle u + v, y \rangle - \frac{1}{4\lambda} ((u - v)^{2}, b') + \frac{i}{\sqrt{2\lambda}} (u - v, a') \right\} df(u) dg(v)$$

for s-a.e. $y \in C_{a,b}[0,T]$. But the last expression above is analytic throughout \mathbb{C}_+ , and is continuous on $\tilde{\mathbb{C}}_+$. Thus we have the equation (3.10) above.

Let a set function $h: \mathcal{B}(L^2_{a,b}[0,T] \times L^2_{a,b}[0,T]) \to \mathbb{C}$ be defined by (3.12)

$$h(E) = \int_{E} \exp\left\{-\frac{i}{4q}((u-v)^{2}, b') + i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u-v, a')\right\} df(u)dg(v)$$

for each $E\in \mathcal{B}(L^2_{a,b}[0,T]\times L^2_{a,b}[0,T])$. Then h is a complex Borel measure on $\mathcal{B}(L^2_{a,b}[0,T]\times L^2_{a,b}[0,T])$. Now we define a function $\varphi:L^2_{a,b}[0,T]\times L^2_{a,b}[0,T]\to L^2_{a,b}[0,T]$ by

(3.13)
$$\varphi(u,v) = \frac{1}{\sqrt{2}}(u+v).$$

Then φ is continuous and so it is Borel measurable. Let $\tilde{h} = h \circ \varphi^{-1}$. By the condition (3.9) above, we have that for real q with $|q| \ge |q_0|$ (3.14)

$$\begin{split} ||\tilde{h}|| &= \int_{L_{a,b}^{2}[0,T]} \int_{L_{a,b}^{2}[0,T]} |dh(u,v)| \\ &\leq \int_{L_{a,b}^{2}[0,T]} \int_{L_{a,b}^{2}[0,T]} \left| \exp\left\{-\frac{i}{4q}((u-v)^{2},b') + i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u-v,a')\right\} \middle| |df(u)||dg(v)| \\ &\leq \int_{L_{a,b}^{2}[0,T]} \exp\left\{\frac{1}{\sqrt{|4q_{0}|}} \int_{0}^{T} |u(s)|d|a|(s)\right\} |df(u)| \\ &\cdot \int_{L_{a,b}^{2}[0,T]} \exp\left\{\frac{1}{\sqrt{|4q_{0}|}} \int_{0}^{T} |v(s)|d|a|(s)\right\} |dg(v)| < \infty. \end{split}$$

Hence $\tilde{h} = h \circ \varphi^{-1}$ belongs to $M(L_{a,b}^2[0,T])$ and

(3.15)
$$(F * G)_q(y) = \int_{L^2_{a,b}[0,T]} \exp\{i\langle r, y \rangle\} d\tilde{h}(r)$$

for s-a.e. $y \in C_{a,b}[0,T]$. Hence $(F*G)_q$ exists and is given by (3.10) for all real q with $|q| \geq |q_0|$ and it belongs to $\mathcal{S}(L^2_{a,b}[0,T])$.

REMARK 3.3. Let F, f, and q_0 be as in Theorem 3.2. Then for all real q with $|q| \geq |q_0|$, F_q^* and *F_q exist. Furthermore, F_q^* and *F_q are in $\mathcal{S}(L_{a,b}^2[0,T])$.

THEOREM 3.3. Let F, G, f, g, and q_0 be as in Theorem 3.2. Then for all $p \in [1,2]$ and all real q with $|q| \ge |q_0|$,

(3.16)
$$T_q^{(p)}((F*G)_q)(y) = T_q^{(p)}(F_q^*)(y)T_q^{(p)}(^*G_q)(y)$$

for s-a.e. $y \in C_{a,b}[0,T]$, where F_q^* and G_q^* are given by (2.13). Also, both of the expressions in (3.16) are given by the expression

(3.17)
$$\int_{L_{a,b}^{2}[0,T]} \int_{L_{a,b}^{2}[0,T]} \exp\left\{\frac{i}{\sqrt{2}}\langle u+v,y\rangle - \frac{i}{2q}(u^{2}+v^{2},b') + 2i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u,a')\right\} df(u)dg(v).$$

PROOF. By using (2.9), (2.12), the Fubini theorem, and (2.14), we have that for all $\lambda > 0$,

$$(3.18) T_{\lambda}((F * G)_{\lambda})(y) = T_{\lambda}(F_{\lambda}^{*})(y)T_{\lambda}({}^{*}G_{\lambda})(y)$$

for s-a.e. $y \in C_{a,b}[0,T]$. But both of the expressions on the right-hand side of equation (3.18) are analytic functions of λ throughout \mathbb{C}_+ , and are continuous functions of λ on $\tilde{\mathbb{C}}_+$ for all $y \in C_{a,b}[0,T]$. By using (3.9), $T_q^{(p)}((F*G)_q)$ exists for all real q with $|q| \geq |q_0|$ and is given by (3.16) for all desired values of p and q.

THEOREM 3.4. Let F, G, f, g, and q_0 be as in Theorem 3.3. Then

$$\int_{C_{a,b}[0,T]}^{\inf_{-q}} T_q^{(p)}((F*G)_q)(y)d\mu(y)
= \int_{C_{a,b}[0,T]}^{\inf_{-q}} T_q^{(p)}(F_q^*)(y)T_q^{(p)}(^*G_q)(y)d\mu(y)
= \int_{C_{a,b}[0,T]}^{\inf_q} (F_{-q}^*)_q^*(y)(G_{-q}^*)_q^*(-y)d\mu(y)$$

for all $p \in [1, 2]$ and all real q with $|q| \ge |q_0|$.

PROOF. Fix p and q. Then for $\lambda > 0$, using (3.17) and the Fubini theorem we have

$$\int_{C_{a,b}[0,T]} T_q^{(p)}((F*G)_q)(y/\sqrt{\lambda})d\mu(y)
= \int_{C_{a,b}[0,T]} \int_{L_{a,b}^2[0,T]} \int_{L_{a,b}^2[0,T]} \exp\left\{\frac{1}{\sqrt{2\lambda}}\langle u+v,y\rangle\right.
(3.20) \qquad -\frac{i}{2q}(u^2+v^2,b') + 2i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u,a')\right\} df(u)dg(v)d\mu(y)
= \int_{L_{a,b}^2[0,T]} \int_{L_{a,b}^2[0,T]} \exp\left\{-\frac{1}{4\lambda}((u+v)^2,b') + \frac{i}{\sqrt{2\lambda}}(u+v,a')\right.
\left. -\frac{i}{2q}(u^2+v^2,b') + 2i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u,a')\right\} df(u)dg(v).$$

But the last expression is an analytic function of λ throughout $\tilde{\mathbb{C}}_+$ and is continuous throughout $\tilde{\mathbb{C}}_+$, and so letting $\lambda = -i(-q) = iq$, we obtain that

$$(3.21) \int_{C_{a,b}[0,T]}^{\inf_{-q}} T_q^{(p)}((F*G)_q)(y) d\mu(y)$$

$$= \int_{L_{a,b}^2[0,T]} \int_{L_{a,b}^2[0,T]} \exp\left\{\frac{i}{4q}((u+v)^2,b') + i\left(\frac{-i}{2q}\right)^{\frac{1}{2}}(u+v,a')\right\} - \frac{i}{2q}(u^2+v^2,b') + 2i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u,a')\right\} df(u) dg(v)$$

$$= \int_{L_{a,b}^2[0,T]} \int_{L_{a,b}^2[0,T]} \exp\left\{-\frac{i}{4q}((u-v)^2,b') + i\left(\frac{-i}{2q}\right)^{\frac{1}{2}}(u+v,a')\right\} + 2i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u,a')\right\} df(u) dg(v).$$

Clearly, the condition (3.9) will imply the existence of (3.21). On the other hand, using (2.13), (3.10), the Fubini theorem, and (2.14), we

obtain that for $\lambda > 0$,

$$(F_{-q}^*)_{\lambda}^*(y)$$

$$= \int_{C_{a,b}[0,T]} F_{-q}^* \left(\frac{y + \lambda^{-\frac{1}{2}}x}{\sqrt{2}}\right) d\mu(x)$$

$$= \int_{L_{a,b}^2[0,T]} \exp\left\{\frac{i}{\sqrt{2}}\langle u, y \rangle - \frac{1}{4\lambda}(u^2, b') + \frac{i}{\sqrt{2\lambda}}(u, a')\right\}$$

$$+ \frac{i}{4q}(u^2, b') + i\left(\frac{-i}{2q}\right)^{\frac{1}{2}}(u, a')\right\} df(u)$$

and

$$(G_{-q}^*)_{\lambda}^*(-y)$$

$$= \int_{C_{a,b}[0,T]} G_{-q}^* \left(\frac{-y + \lambda^{-\frac{1}{2}}x}{\sqrt{2}}\right) d\mu(x)$$

$$= \int_{L_{a,b}^2[0,T]} \exp\left\{-\frac{i}{\sqrt{2}}\langle v, y \rangle - \frac{1}{4\lambda}(v^2, b') + \frac{i}{\sqrt{2\lambda}}(v, a')\right\}$$

$$+ \frac{i}{4q}(v^2, b') + i\left(\frac{-i}{2q}\right)^{\frac{1}{2}}(v, a')\right\} dg(v)$$

s-a.e. $y \in C_{a,b}[0,T]$. By using (3.22) and (3.23), we have that for $\lambda > 0$

$$(3.24) \int_{C_{a,b}[0,T]} (F_{-q}^*)_{\lambda}^*(y/\sqrt{\lambda}) (G_{-q}^*)_{\lambda}^*(-y/\sqrt{\lambda}) d\mu(y)$$

$$= \int_{L_{a,b}^2[0,T]} \int_{L_{a,b}^2[0,T]} \exp\left\{-\frac{1}{4\lambda}((u-v)^2,b') + \frac{i}{\sqrt{2\lambda}}(u-v,a') - \frac{1}{4\lambda}(u^2+v^2,b') + \frac{i}{\sqrt{2\lambda}}(u+v,a') + \frac{i}{4q}(u^2+v^2,b') + i\left(\frac{-i}{2q}\right)^{\frac{1}{2}}(u+v,a')\right\} df(u) dg(v).$$

But the last expression above is an analytic function of λ throughout $\tilde{\mathbb{C}}_+$ and is continuous throughout on $\tilde{\mathbb{C}}_+$ and so letting $\lambda \to -iq$ we obtain

that (3.25) $\int_{C_{a,b}[0,T]}^{\operatorname{anf}_{q}} (F_{-q}^{*})_{q}^{*}(y) (G_{-q}^{*})_{q}^{*}(-y) d\mu(y)$ $= \int_{L_{a,b}^{2}[0,T]} \int_{L_{a,b}^{2}[0,T]} \exp\left\{-\frac{i}{4q}((u-v)^{2},b') + 2i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u,a') + i\left(\frac{-i}{2q}\right)^{\frac{1}{2}}(u+v,a')\right\} df(u) dg(v).$

Now (3.21) and (3.25) together yield (3.19).

REMARK 3.4. In Theorem 3.4 above, if $a(t) \equiv 0$, then for all $q \neq 0$, (3.26)

$$T_q^{(p)}(F_q^*)(y) = T_q^{(p)}(F)(y/\sqrt{2})$$
 and $T_q^{(p)}({}^*G_q)(y) = T_q^{(p)}(G)(y/\sqrt{2})$

for s-a.e. $y \in C_{a,b}[0,T]$. Furthermore

$$(F_{-q}^*)_q^*(y) = F(y/\sqrt{2})$$
 and $(G_{-q}^*)_q^*(-y) = G(-y/\sqrt{2}).$

Hence we have the following Parseval's identity

$$\begin{split} &\int_{C_{a,b}[0,T]}^{\inf_{-q}} T_q^{(p)}((F*G)_q)(y) d\mu(y) \\ &= \int_{C_{a,b}[0,T]}^{\inf_{-q}} T_q^{(p)}(F)(y/\sqrt{2}) T_q^{(p)}(G)(y/\sqrt{2}) d\mu(y) \\ &= \int_{C_{a,b}[0,T]}^{\inf_{q}} F(y/\sqrt{2}) G(-y/\sqrt{2}) d\mu(y). \end{split}$$

4. Multiple L_p analytic GFFT and the GCP

In this section we will give a definition of the multiple L_p analytic GFFT of a functional on $C_{a,b}[0,T]$ and then establish some relationships between the multiple L_p analytic GFFT and the GCP of functionals in $\mathcal{S}(L_{a,b}^2[0,T])$.

First, we state the definition of the multiple L_p analytic GFFT of a functional F on $C_{a,b}[0,T]$.

DEFINITION 4.1. Let F be a measurable functional defined on $C_{a,b}$ [0,T] and define a transform $(T_{\gamma})^{(n)}(F)$ $(\gamma > 0)$ of F by

(4.1)
$$(T_{\gamma})^{(n)}(F) = \underbrace{(T_{\gamma} \circ \cdots \circ T_{\gamma})}_{n-\text{times}}(F),$$

that is, $(T_{\gamma})^{(n)}$ means the *n*-times composition of T_{γ} , where T_{γ} is given by (2.9) in Definition 2.2 and *n* is a nonnegative integer. When λ is in \mathbb{C}_+ , the transform $(T_{\lambda})^{(n)}(F)$ means the analytic extension of $(T_{\gamma})^{(n)}(F)$ $(\gamma > 0)$ as the function of $\lambda \in \mathbb{C}_+$.

Let $(T_{\lambda})^{(n)}(F)$ be an analytic extension of $(T_{\gamma})^{(n)}(F)$ as a function of $\lambda \in \mathbb{C}_+$. In case that $1 , for each <math>q \in \mathbb{R} - \{0\}$, we define the multiple L_p analytic GFFT $(T_q^{(p)})^{(n)}(F)$ of F by

(4.2)
$$(T_q^{(p)})^{(n)}(F) = \text{l.i.m.}_{\lambda \to -iq} (T_\lambda)^{(n)}(F),$$

where λ approaches -iq through \mathbb{C}_+ .

In case that p = 1, for each $q \in \mathbb{R} - \{0\}$, we define the multiple L_1 analytic GFFT $(T_q^{(1)})^{(n)}(F)$ of F by

(4.3)
$$(T_q^{(1)})^{(n)}(F) = \lim_{\lambda \to -iq} (T_\lambda)^{(n)}(F),$$

where λ approaches -iq through \mathbb{C}_+ .

Note that $(T_{\lambda})^{(0)}(F) \equiv F \equiv (T_q^{(p)})^{(0)}(F), (T_{\lambda})^{(1)}(F) \equiv T_{\lambda}(F), \text{ and } (T_q^{(p)})^{(1)}(F) \equiv T_q^{(p)}(F).$

We have already shown that for $F \in \mathcal{S}(L^2_{a,b}[0,T])$ with condition (3.4), the L_p GFFT $T_q^{(p)}(F)$ belongs to the Banach algebra $\mathcal{S}(L^2_{a,b}[0,T])$. Hence by using the mathematical induction and proceeding as in the proof of Theorem 3.1, we can obtain the following theorem.

THEOREM 4.1. Let q_0 be a nonzero real number and let n be a non-negative integer. Let $F \in \mathcal{S}(L^2_{a,b}[0,T])$ be given by (3.1) whose associated measure f satisfies the condition

$$(4.4) \qquad \int_{L^{2}_{s,t}[0,T]} \exp \left\{ \frac{n}{\sqrt{|2q_{0}|}} \int_{0}^{T} |u(s)|d|a|(s) \right\} |df(u)| < \infty.$$

Then for all $p \in [1,2]$ and all real q with $|q| \ge |q_0|$, the multiple L_p analytic GFFT $(T_q^{(p)})^{(n)}(F)$ exists and is given by

$$(T_a^{(p)})^{(n)}(F)(y)$$

(4.5)
$$= \int_{L_{a,b}^{2}[0,T]} \exp \left\{ i \langle u, y \rangle - \frac{in}{2q} (u^{2}, b') + in \left(\frac{i}{q} \right)^{\frac{1}{2}} (u, a') \right\} df(u)$$

for s-a.e. $y \in C_{a,b}[0,T]$. Furthermore, $(T_q^{(p)})^{(n)}(F)$ is an element of $S(L_{a,b}^2[0,T])$ with associated measure

$$\phi_n(E) = \int_E \exp\left\{-\frac{in}{2q}(u^2, b') + in\left(\frac{i}{q}\right)^{\frac{1}{2}}(u, a')\right\} df(u)$$

for $E \in \mathcal{B}(L^2_{a,b}[0,T])$.

Note that (4.5) is reduced to (3.5), if we take n = 1 in (4.5).

Next, we obtain the GCP of the multiple L_p analytic GFFT's of functionals in $\mathcal{S}(L_{a,b}^2[0,T])$.

THEOREM 4.2. Let q_0 be a nonzero real number and let n be a non-negative integer. Let F and G be elements of $\mathcal{S}(L^2_{a,b}[0,T])$ whose associated measures f and g satisfy the condition

$$(4.6) \int_{L_{a,b}^{2}[0,T]} \exp\left\{\frac{n}{\sqrt{|2q_{0}|}} \dot{\int}_{0}^{T} |u(s)|d|a|(s)\right\} \left[|df(u)| + |dg(v)|\right] < \infty.$$

Then for all $p \in [1,2]$, all real q with $|q| \ge |q_0|$ and a nonnegative integer m, the GCP $((T_q^{(p)})^{(n)}(F)*(T_q^{(p)})^{(m)}(G))_q(y)$ exists and is given by (4.7) below. Furthermore $((T_q^{(p)})^{(n)}(F)*(T_q^{(p)})^{(m)}(G))_q$ is an element of $\mathcal{S}(L_{a,b}^2[0,T])$.

PROOF. By using (4.5) and (3.10) we observe that for all $p \in [1, 2]$ and all q with $|q| \ge |q_0|$ (4.7)

$$\begin{split} & \left((T_q^{(p)})^{(n)}(F) * (T_q^{(p)})^{(m)}(G) \right)_q(y) \\ & = \int_{L_{a,b}^2[0,T]} \int_{L_{a,b}^2[0,T]} \exp \left\{ \frac{i}{\sqrt{2}} \langle u+v,y \rangle - \frac{in}{2q} (u^2,b') - \frac{im}{2q} (v^2,b') \right. \\ & \left. + in \left(\frac{i}{q} \right)^{\frac{1}{2}} (u,a') + im \left(\frac{i}{q} \right)^{\frac{1}{2}} (v,a') \right. \\ & \left. - \frac{i}{4q} ((u-v)^2,b') + i \left(\frac{i}{2q} \right)^{\frac{1}{2}} (u-v,a') \right\} df(u) dg(v) \end{split}$$

for s-a.e. $y \in C_{a,b}[0,T]$. Furthermore, proceeding as in the proof of Theorem 3.2 above and using (4.6), we see that $((T_q^{(p)})^{(n)}(F)*(T_q^{(p)})^{(m)}(G))_q$ is an element of $\mathcal{S}(L_{a,b}^2[0,T])$.

Note that (4.7) is reduced to (3.10), if we take m = n = 0 in (3.10).

In our next theorem, we obtain the multiple L_p analytic GFFT of the convolution product for two functionals in $\mathcal{S}(L^2_{a,b}[0,T])$.

THEOREM 4.3. Let F, G, f, g and q_0 be as in Theorem 4.2. Then for all $p \in [1,2]$ and all real q the following equation with $|q| \ge |q_0|$,

$$(T_q^{(p)})^{(n)}((F*G)_q)(y)$$

$$= \int_{L_{a,b}^2[0,T]} \int_{L_{a,b}^2[0,T]} \exp\left\{\frac{i}{\sqrt{2}}\langle u+v,y\rangle\right\}$$

$$-\frac{i}{4q}((u-v)^2,b') + i\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u-v,a')$$

$$-\frac{in}{4q}((u+v)^2,b') + in\left(\frac{i}{2q}\right)^{\frac{1}{2}}(u+v,a')\right\} df(u)dg(v)$$

holds for s-a.e. $y \in C_{a,b}[0,T]$, where n is a nonnegative integer. Furthermore, $(T_q^{(p)})^{(n)}((F*G)_q)(y)$ is an element of $\mathcal{S}(L_{a,b}^2[0,T])$.

PROOF. By using equations (3.10) and (4.5), we can easily obtain the equation (4.8) above. Moreover, the condition (4.6) will imply the existence of the equation (4.8).

Finally, we show that the L_p analytic GFFT of the GCP of the multiple L_p analytic GFFT's is a product of the multiple L_p analytic GFFT's of the transforms for functionals in $\mathcal{S}(L_{a,b}^2[0,T])$.

THEOREM 4.4. Let F, G, f, g, q_0 , n and m be as in Theorem 4.2. Then for all $p \in [1, 2]$ and all real q the following equation with $|q| \ge |q_0|$,

(4.9)
$$T_q^{(p)}(((T_q^{(p)})^{(n)}(F) * (T_q^{(p)})^{(m)}(G))_q)(y) = (T_{q/2}^{(p)})^{(n)}(T_q^{(p)}(F_q^*))(y)(T_{q/2}^{(p)})^{(m)}(T_q^{(p)}(^*G_q))(y)$$

holds for s-a.e. $y \in C_{a,b}[0,T]$, where F_q^* and G_q^* are as in (2.13). Also, both expressions in (4.9) are given by the expression

$$\begin{split} \int_{L^2_{a,b}[0,T]} \int_{L^2_{a,b}[0,T]} \exp & \left\{ \frac{i}{\sqrt{2}} \langle u+v,y \rangle - \frac{i(n+1)}{2q} (u^2,b') \right. \\ & \left. - \frac{i(m+1)}{2q} (v^2,b') + in \left(\frac{i}{q} \right)^{\frac{1}{2}} (u,a') \right. \\ & \left. + im \left(\frac{i}{q} \right)^{\frac{1}{2}} (v,a') + i\sqrt{2} \left(\frac{i}{q} \right)^{\frac{1}{2}} (u,a') \right\} df(u) dg(v). \end{split}$$

Furthermore, the transform $T_q^{(p)}(((T_q^{(p)})^{(n)}(F)*(T_q^{(p)})^{(m)}(G))_q)$ is an element of $S(L_{a,b}^2[0,T])$.

PROOF. By using (4.5), (3.10) and (3.5), we can obtain the equation (4.9) above.

Remark 4.1. In Theorem 4.4 above, if $a(t) \equiv 0$, then

$$(4.10) (T_{q/2}^{(p)})^{(n)}(T_q^{(p)}(F)(\cdot/\sqrt{2}))(y) = (T_q^{(p)})^{(n+1)}(F)(y/\sqrt{2})$$

and

$$(4.11) (T_{q/2}^{(p)})^{(m)}(T_q^{(p)}(G)(\cdot/\sqrt{2}))(y) = (T_q^{(p)})^{(m+1)}(G)(y/\sqrt{2}).$$

Hence by using (3.26), (4.10) and (4.11) we obtain that

$$T_q^{(p)}(((T_q^{(p)})^{(n)}(F) * (T_q^{(p)})^{(m)}(G))_q)(y)$$

$$= (T_q^{(p)})^{(n+1)}(F)(y/\sqrt{2})(T_q^{(p)})^{(m+1)}(G)(y/\sqrt{2})$$

for s-a.e. $y \in C_{a,b}[0,T]$.

References

- [1] J. M. Ahn, L₁ analytic Fourier-Feynman transform on the Fresenel class of abstract Wiener space, Bull. Korean Math. Soc. **35** (1998), no. 1, 21-30.
- [2] M. D. Brue, A Functional Transform for Feynman Integrals Similar to the Fourier Transform, thesis, University of Minnesota, Minneapolis, 1972.
- R. H. Cameron and D. A. Storvick, An L₂ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30.

- [4] _____, Some Banach algebras of analytic Feynman integrable functionals, Analytic Functions (Kozubnik, 1979), Lecture Notes in Math., Springer Berlin 798 (1980), 18-67.
- [5] K. S. Chang, T. S. Song and I. Yoo, Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2000), no. 2, 485-501.
- [6] S. J. Chang and D. M. Chung, Conditional function space integrals with applications, Rocky Mountain J. of Math. 26 (1996), no. 1, 37-62.
- [7] S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and the first variation on function space, to appear in Integral Transforms and Special Functions.
- [8] S. J. Chang, J. G. Choi and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2925–2948.
- [9] T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673.
- [10] _____, Convolution and Fourier-Feynman Transforms, Rocky Mountain J. of Math. 27 (1997), 827-841.
- [11] _____, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247–261.
- [12] G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus, Oxford Mathematical Monographs, Clarendon Press, Oxford (2000).
- [13] G. W. Johnson and D. L. Skoug, An L_p Analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127.
- [14] _____, Scale-invariant measurability in Wiener space, Pacific J. Math 83 (1979), 157-176.
- [15] E. Nelson, Dynamical theories of the Brownian motion (2nd edition), Math. Note, Princeton University Press, Princeton, 1967.
- [16] C. Park and D. Skoug, Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001), no. 1, 61-76.
- [17] C. Park and D. Skoug and D. Storvick, Relationships among the first variation, the convolution product, and the Fourier-Feynman transform, Rocky Mountain J. of Math. 28 (1998), no. 4, 1447–1468.
- [18] J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.

Department of Mathematics Dankook University Cheonan 330-714, Korea E-mail: sejchang@dankook.ac.kr

jgchoi@dankook.ac.kr