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MULTIPLE L, ANALYTIC GENERALIZED
FOURIER-FEYNMAN TRANSFORM
ON THE BANACH ALGEBRA

SEUNG JUN CHANG AND JAE GiL CHOI

ABSTRACT. In this paper, we use a generalized Brownian motion
process to define a generalized Feynman integral and a general-
ized Fourier-Feynman transform. We also define the concepts of
the multiple L, analytic generalized Fourier-Feynman transform
and the generalized convolution product of functionals on function
space Cq 5[0, T]. We then verify the existence of the multiple Ly
analytic generalized Fourier-Feynman transform for functionals on
function space that belong to a Banach algebra S (Li,b[O,T]). Fi-
nally we establish some relationships between the multiple L, an-
alytic generalized Fourier-Feynman transform and the generalized
convolution product for functionals in § (Li [0, ).

1. Introduction

The concept of L; analytic Fourier-Feynman transform (FFT) was
introduced by Brue in [2]. In [3], Cameron and Storvick introduced the
concept of an Ly analytic FFT on Wiener space. In [13], Johnson and
Skoug developed an L, analytic FFT theory for 1 < p < 2 which ex-
tended the results in (2, 3] and gave various relationships between the L;
and L; theories. In [9]-[11], Huffman, Park and Skoug developed an L,
analytic FFT theory on certain classes of functionals defined on Wiener
space and they defined a convolution product(CP) of two functionals on
Wiener space and then found several interesting properties for the FFT
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and the CP on Wiener space. In [1], Ahn investigated the L; analytic
FFT theory on the Fresnel class of an abstract Wiener space. In [5],
Chang, Song, and Yoo studied the analytic FFT and the first variation
on abstract Wiener space and the Fresnel class F(B).

The Wiener process is free of drift and is stationary in time while the
stochastic process used in this paper is nonstationary in time, is subject
to a drift a(t), and can be used to explain the position of the Ornstein-
Uhlenbeck process in an external force field {15]. In [6], Chang and
Chung studied the conditional function space integral and in 7], Chang
and Skoug studied the L, analytic generalized Fourier-Feynman trans-
form(GFFT) and first variation on function space C, 5[0,7]. Recently,
in [8], Chang, Choi and Skoug obtained the integration by parts for-
mulas for the generalized Feynman integral and the Ly and Ls analytic
GFFT on function space.

In Section 2 of this paper, we introduce the basic concepts and the
notations for our research. In Section 3, we study the L, analytic GFFT
and the generalized CP(GCP). In Section 4, we investigate the essential
properties for the multiple L, analytic GFFT and the GCP on a function
space C, 5[(0,T]. Finally, we establish some relationships between the
multiple L, analytic GFFT and the GCP for functionals in S(L2 [0, T}).

2. Definitions and preliminaries

Let D = [0,T] and let (2,8, P) be a probability measure space. A
real valued stochastic process Y on (€,8,P) and D is called a gen-
eralized Brownian motion process if Y (0,w)=0 almost everywhere and
for 0 =tg < t; < -+ < t, < T, the n-dimensional random vector
(Y(t1,w), -+ ,Y(ty,w)) is normally distributed with the density func-
tion

K(E: ﬁ) = ((271’)“ (b(tj) _ b(tj_l)))—l/z

—.

1
n

((nj — a(ty)) — (nj—1 — a(t;—1)))?
Z b(t;) — b(tj-1) }

J

. exp{_

where 77 = (1, M), Mo = 0, £ = (t1,--+ ,tn), a(t) is an absolutely
continuous real-valued function on [0, T] with a(0) = 0, o/(t) € L?[0,T],
and b(t) is a strictly increasing, continuously differentiable real-valued
function with b(0) = 0 and '(s) > 0 for each s € [0, T.

(2.1)

N =l

=1
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As explained in [18, pp.18-20], Y induces a probability measure x4 on
the measurable space (RP, BP) where R? is the space of all real valued
functions x(t), t € D, and BP is the smallest o-algebra of subsets of R”
with respect to which all the coordinate evaluation maps e;(z) = z(t)
defined on R are measurable. The triple (R?,BP, i) is a probability
measure space. This measure space is called the function space induced
by the generalized Brownian motion process Y determined by a(-) and
b(-).

We note that the generalized Brownian motion process Y determined
by a(-) and b(-) is a Gaussian process with mean function a(t) and co-
variance function r(s,t) = min{b(s), b(t)}. By Theorem 14.2 [18, p.187],
the probability measure x4 induced by Y, taking a separable version, is
supported by C, [0, T] (which is equivalent to the Banach space of con-
tinuous functions z on [0, 7] with z(0) = 0 under the sup norm). Hence
(Cap[0,T], B(Cy[0,T]), ) is the function space induced by Y where
B(Ca[0,T1) is the Borel o-algebra of C, [0, T].

A subset B of C, [0, T] is said to be scale-invariant measurable [14]
provided pB is B(C, [0, T])-measurable for all p > 0, and a scale-
invariant measurable set IV is said to be scale-invariant null set provided
uw(pN) = 0 for all p > 0. A property that holds except on a scale-
invariant null set is said to hold scale-invariant almost everywhere(s-
a.e.).

Let L2 ,[0,T] be the Hilbert space of functions on [0,T] which are
Lebesgue measurable and square integrable with respect to the Lebesgue
Stieltjes measures on [0, 7] induced by a(-) and b(-): i.e.,

(2.2)

Lg,b[o,T]={v:/0T 2(5)db(s) ooand/ s)dlal(s }

where |a|(t) denotes the total variation of the function a on the interval
[0, ¢].
For u,v € Li)b[O,T], let

T
(2.3) (1, 0 = /0 w(t)o(t)db(t) + |al(t)].

Then (-,-)a, is an inner product on L2 ,[0,T] and [Jullas = 1/(u, t)as
is a norm on LZ,[0,T]. In particular note that |lulls,, = 0 if and only
if u(t) = 0 a.e. on [0,7]. Furthermore (L2 ,[0,T], - |la,s) is a separable
Hilbert space.
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Let {#;}32, be a complete orthonormal set of real-valued functions
of bounded variation on [0, 7] such that

0, j#k
(¢]7¢k)a,b { 1, -k )
and for each v € L2 [0, T, let
(2.4) ) =D (v,65)ap®;(t)
Jj=1

for n = 1,2,---. Then for each v € LZ,[0,T], the Paley-Wiener-
Zygmund(PWZ) stochastic integral (v, z) is defined by the formula

T
(2.5) (v,z) = lim U (t)da(t)

n—00 0

for all z € C, 5[0, T] for which the limit exists ; one can show that for each
v € L2 ,]0,T], the PWZ integral (v,z) exists for p-a.e. x € Cyp[0,7].

We denote the function space integral of a B(C, ,[0, T})-measurable
functional F' by

(2.6) E[F] = /C )

whenever the integral exists.
We are now ready to state the definition of the generalized analytic
Feynman integral.

DEFINITION 2.1. Let C denote the complex numbers. Let C, =
{fAeC:Rex>0and C; = {A € C: A # 0 and ReX > 0}. Let
F : Cy[0,T] — C be such that for each A > 0, the function space
integral

I = [ PO h)due)
2,6[0,T]
exists for all A > 0. If there exists a function J*(\) analytic in C; such
that J*(A) = J(A) for all A > 0, then J*(\) is defined to be the analytic

function space integral of F' over C,[0,T] with parameter A, and for
A € C, we write

(2.7) E* [F] = E*™ [F(z)] = J*(\).
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Let g # 0 be a real number and let F be a functional such that F2">[F]
exists for all A € C,. If the following limit exists, we call it the gener-
alized analytic Feynman integral of F' over C, [0, T} with parameter ¢
and we write

(2.8) Efa[F] = E24[F(z)] = lim E*™[F)

A——igq
where A approaches —iq through C, .
Next we state the definitions of the analytic GFFT and the GCP.
DEFINITION 2.2. For A € C; and y € C, [0, 77, let

(2.9) T\(F)(y) = B3 [F(y + z)].

In the standard Fourier theory, the integrals involved are often inter-
preted in the mean; a similar concept is useful in the FFT theory [13].
Let p € (1,2] and let p and p’ be related by 1/p+1/p’ = 1. Let {H,} and
H be scale-invariant measurable functionals such that for each p > 0,

Jlim B[ Ha(py) = H(py)l"'} =0.
Then we write
H ~ l.i.m-n—>ooHn

and we call H the scale-invariant limit in the mean of order p’. A similar
definition is understood when n is replaced by the continuously varying
parameter .

We are ready to state the definition of the L, analytic GFFT.

DEFINITION 2.3. Let ¢ be a nonzero real number and let F' be a
measurable functional on C,4[0,T]. For p € (1,2], we define the L,

analytic GFFT, T (F) of F, by the formula (A € C.)
(2.10) TP (F)(y) = Lim—i Th(F)(y)

if it exists. We define the Ly analytic GFFT, T\" (F) of F, by the
formula (A € C4)

(211) TOF)w) = lim Ty(F))

if it exists.

We note that for 1 < p < 2, Tq(p)(F) is defined only s-a.e.. We
also note that if Tq(p ) (F) exists and if F' ~ G, then Tq(p ) (@) exists and
7" (G) = T{" (F).
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DEFINITION 2.4. Let F and G be measurable functionals on Cj
[0,T]. For A € C, we define their GCP (F * G), (if it exists) by
(2.12)

(F+Ch) {ES“WF(%@)G%M, rec.
A = an T —_ .
B2 [F(L2)G(5E)], A=—ig, q€R, g #0.

REMARK 2.1. (1) When A = —iq, we denote (F x G)) by (F xG),.
(2) For any real g # 0, we briefly describe F;/ and *F; of a functional
F on C, [0, T as follows :

(2.13) F;=(Fx1), and Fy= (1% F),.

The following generalized analytic Feynman integral formula is used
several times in this paper.

(2.14) E,Jexp{ir~7 (v, z)} = exp{~%(v2, b') + A" (v, a')}

for all A € Cy and v € L2 [0, T], where

T T
(2.15) (v,a')=/0 v(t)a'(t)clt=/0 v(t)da(t)

and

(2.16) (W2, b) = /0 2w (1)t = /0 " 2 (0)db(o).

3. Transforms and convolutions

First we give the definition of the Banach algebra S(LZ ,[0,T]) re-
ferred to in Section 1 above.

DEFINITION 3.1. Let M(LZ ,[0,T]) be the space of complex-valued,
countably additive (and hence finite) Borel measures on Li, [0, T]. The

Banach algebra S(L2 ,[0, T}) consists of those functionals F on Co 5[0, T
expressible in the form

(3.1) F(z) = /L2 o exp{i(u, z) }df (u)

for s-a.e. € C,[0,T], where the associated measure f is an element
of M(Lz,b[O,T]).
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REMARK 3.1. (i) When a(t) = 0 and b(t) = ¢ on [0, T], S(L2 ,[0,T])
reduces to the Banach algebra S introduced by Cameron and Storvick
in [4]. For further work on S, see the references referred to in Section
20.1 of [12].

(ii) M (L2 ,[0,T]) is a Banach algebra under the total variation norm
where convolution is taken as the multiplication.

(iii) One can show that the correspondence f — F is injective, car-
ries convolution into pointwise multiplication and that S(L2 [0, T]) is a
Banach algebra with norm

iF=r=

a,bl™?

|df (w)]-
7]

In [4], Cameron and Storvick carry out these arguments in detail for the
Banach algebra S.

ReEMARK 3.2. If a(t) = 0 on [0,7), then for all F € S(L2,[0,T])
with associated measure f, the generalized analytic Feynman integral
B[ F] will always exist for all real ¢ # 0 and be given by the formula

(3.2) E*a[F] = /L o exp{ _ é(u;#bl)}df(u).

However, for a(t) and b(t) as in Section 2, and proceeding formally
using equations (3.1) and (2.14), we see that E2*4[F] will be given by
the formula

(3.3) E*[F] = /L o exp{ — i(i;qfl,—) +i<§>%(u,a’)}df(u)

if it exists. But the integral on the right hand-side of (3.3) might not
exist if the real part of

1
i(u?,b) (2)7 /
-t = u,a
5 ;) @

is positive. However

S R O (] bet it et
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and so the generalized analytic Feynman integral £« [F] will certainly
exist provided the associated measure f satisfies the condition

sy | - { Ner / u(s)ldlal(s }Idf(U)l<<>0~

In our next theorem, we obtain the L, analytic GFFT Tép ) (F)ofa
functional F in S(L2 ,[0,T7).

THEOREM 3.1. Let qo be a nonzero real number and let F' be an ele-
ment of S(L2 ,[0, T]) whose associated measure f satisfies the condition
(3.4) above W1th q replaced with qo. Then for all p € [1,2] and all real q
with |q| > |qo|, the L, analytic GFFT of F, Tq(p)(F) exists and is given
by the formula
(3.5)

) (F)(y) = /

12,[0.7]

exp{ifuv) - 5o (2,8) + z(;f(u,a’)}df(w

for ssa.e. y € C,p[0,T]. Furthermore Tq(p )(F) is an element of S (Li’b
[0, T]) with associated measure ¢ defined by

(3.6) H(E) = /Eexp{—%;(uQ,b’) —I—i(g)%(u,a’)}df(u)

for E € B(L2,[0, T)).

PrOOF. By (2.9), the Fubini theorem, and (2.14), we have that for
all A >0,
(3.7)

TA(F)(y) = Eo[F(y + A"V?z)]

_ / Ealexp{ilu, y) +ix~2(u, z)}]df (u)
L2 ,[0,T]

=/L§,b[O’T]exp{i<u,y) 21 (u? b’)+\r(ua)}df(u)

for s-a.e. y € C,p[0,7]. But the last expression above is analytic
throughout C, and is continuous on C;. Thus the equation (3.5) is
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established. Let ¢ be defined by (3.6) for each E € B(LZ,[0,T]). B
using (3.4) above, we obtain that

(38) ¢l < /abmep{ 5 | el }ldf<u>|<oo.

Hence we have the desired result. O

In our next theorem, we obtain the GCP of functionals in S(LZ ,[0, T]).

THEOREM 3.2. Let gy be a nonzero real number and let F' and G be
elements of S(LZ ,[0,T]) whose associated measures f and g satisfy the
condition

59 [, e {2 T, e il + dgul]) < o

Then the1r GCP (F x G)q exists for all p € [1,2] and all real ¢ with
lg| > |qo| and is given by the formula
(3.10)

(F xG)q / / exp{ (u+v,y)
,[0,71 /L2 ,[0,T]

- (=02 +i( 5 ) v pardst)

for s-a.e. y € Cap[0,T). Furthermore (F * G), is an element of S(L2 ,
[0, 77).

PROOF. By using (2.12), the Fubini theorem, and (2.14), we have
that for all A > 0,

(F*G)a(y)
/Lz OT]/Lzb[OT Ey [exp{ﬁ<u+v y)

(3.11) L
+ \/——2,X<u - v,) }] df (u)dg(v)

]
exps —=(u + v,y
/ b[OT]/Lzb[OT {\/_< >

- (= o)+ ) (0)da(o)
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for s-a.e. y € C,[0,T]. But the last expression above is analytic
throughout C,, and is continuous on (f:+. Thus we have the equation
(3.10) above.

Let a set function h : B(L2 ,[0,T] x L2 [0, T]) — C be defined by

(3.12) 1
h(E) = /E exp{—%q((u — )2, ) +z<é> fu—, a’)}df(u)dg(v)

for each E € B(LZ,[0,T] x L2,[0,T]). Then h is a complex Borel
measure on B(L2,[0,T] x L2 [0 T]). Now we define a function ¢ :
Lgvb[O,T] X Lg,b[O,T] — L2 b[O T) by

(3.13) o(u,v) = %(u +v).

Then ¢ is continuous and so it is Borel measurable. Let b = ho ¢!,

By the condition (3.9) above, we have that for real ¢ with |g| > |qo|
(3.14)

||hn—/ L ldna)
2,0, J12 [0,7]
</ / exp{ - L ((u v, ¥)
2 fo,11J12 o,1] 4q

+z<-2-%>2(u~v,a’)}’ldf(U)lldg(v)l
(5)ldlal (s }|df(u)|

< [ omel [
Lg‘b[OT |4q0|

()ldlal(s }ldg(v)l < co.

/Lfl,b[O,T] { V440
Hence h = h o ¢! belongs to M(L2 ,[0,T]) and
G139  (FxOu)= [ exwlilna)dh()
L2 ,[0.7)

for s-a.e. y € C,[0,T]. Hence (F * G), exists and is given by (3.10) for
all real ¢ with |g| > |go| and it belongs to S(LZ ,[0,T}). a
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REMARK 3.3. Let F, f, and go be as in Theorem 3.2. Then for all
real ¢ with |g| > |go|, F; and *F, exist. Furthermore, F; and *F; are
in S(Lg’b[O,T]).

THEOREM 3.3. Let F, G, f, g, and g9 be as in Theorem 3.2. Then
for all p € [1,2] and all real ¢ with |q| > |qo|,

(3.16) TP((F * G)) () = TP (F]) W) TP ("Go)(y)

for s-a.e. y € Cyp[0,T], where F} and *G, are given by (2.13). Also,
both of the expressions in (3.16) are given by the expression

1 )
€XpPYy —7= u+v,y>-—(u2+v2,b')
/Liyb[O,T] /Lg’b[o,:r] {\/§< 2q

(3.17) o
v 21(2%) “(u, a’)}df(u)dg(v).

ProoF. By using (2.9), (2.12), the Fubini theorem, and (2.14), we
have that for all A > 0,

(3.18) Th((F * G)x)(y) = T(FX) W) Th{"Ga)(y)

for s-a.e. y € C,[0,7]. But both of the expressions on the right-hand
side of equation (3.18) are analytic functions of A throughout C,, and
are continuous functions of A on C; for all y € C,4[0,7]. By using

(3.9), Tq(p)((F * () 4) exists for all real ¢ with [g] > |go| and is given by
(3.16) for all desired values of p and q. O

THEOREM 3.4. Let F, G, f, g, and q¢ be as in Theorem 3.3. Then

anf_,
[ 1)) wdut)

Ca (0,7}

anf_g
(3.19) - / T (F2) ()T (*C) () duly)
C,,5[0,7

anf,
- / (F* )2 ()(G" )5 (~y)du(y)

Cq,5[0,T]

for all p € [1,2] and all real g with |q] > |qo|-
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PRrROOF. Fix p and q. Then for A > 0, using (3.17) and the Fubini

theorem we have

/a »[0,7] TP ((F % G)g)(y/vV\)duly)
/a,,o:r]/Lz OT]/L2 [OT]exp{ 12/\(u+v )

(3.20) 2. (u? + 02, b) + 2 <2iq) ’ (u, a’)}df(u)dg(v)du(y)

1 2 3 J /
exp u+v)“b)+ u+v,a
/ b[OT/ab[OT { PSR \/ﬁ( )

;q(u + 02 b’)+2z(2q>%(u,a’)}df(u)dg(v),

But the last expression is an analytic function of A throughout C. and
is continuous throughout C, and so letting A = —i(—¢g) = ig, we obtain
that

(3.21

)
anf_,
/ T (F * 6)p)(u)du(y)

Ca,5[0,T)

—2—q(u Lo b/)+22(2;>%(u,a/)}df(u)dg(v)
+2i(2;)%( ) b )igo)

Clearly, the condition (3.9) will imply the existence of (3.21). On the
other hand, using (2.13), (3.10), the Fubini theorem, and (2.14), we
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obtain that for A > 0,

(FZ)A(y)

. (y+ )\‘%m>
= F* <— du(z)
/ca,,,[o,T] ? V2

(3.22) _ /Li‘b[oﬂ eXp{\j§< ) ~ 41/\( 2 b’)+\/%(u,a')
+ 4%(u2,b’) H(;_;) %(u,a')}df(’“)
and

(GZ)A(~v) 1
(3.23) /L 3,b[o,T1€Xp{ \2(@ 9 - @)+ + s 0,d)

s-a.e. y € Cy3[0,T]. By using (3.22) and (3.23), we have that for A > 0

(M

(0.0 pa(o)

/ o EEREDE S V)

X 1 u—v)2 b Lu—v a
. /Lzb[OT]/L OT]‘”’{ ;M(( 2.H) + (= v,0)
—a(u +vg,b')+ﬁ(u+v,a')
+ (u2+vz,b’)+z<_—;>i(u+va)}df() (v)

But the last expression above is an anlytic function of A throughout C+
and is continuous throughout on C; and so letting A — —ig we obtain
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that
(3.25)

anf,
JARGR O BRIt

Ca (0,7

i i\
exp — —((u—1v)%,¥) + 22( ) (u,a’)
/L2 ,10.7] /L2 0,7 { 4q ) 2q

+i(3) @t o) o)
Now (3.21) and (3.25) together yield (3.19). O

REMARK 3.4. In Theorem 3.4 above, if a(t) = 0, then for all ¢ # 0,
(3.26)
TP (Fy)y) = TP (F)(y/V2) and TP (*G,)(y) = TP (G)(y/V?2)

for s-a.e. y € Cy[0,T). Furthermore

(FZ)s(y) = F(y/V2) and (G=,)i(~y) = G(~y/V2).

Hence we have the following Parseval’s identity

anf_,
[ 10 @y

Cq,5[0,77]

anf_g,
=/ T (F)(y/VD TP (G)(y/V2)du(y)

Ca [0,

anfy
- / F(y/V3)G(~y/V2)du(y).

Cqa (0,7

4. Multiple L, analytic GFFT and the GCP

In this section we will give a definition of the multiple L, analytic
GFFT of a functional on C, [0, T] and then establish some relationships
between the multiple L, analytic GFFT and the GCP of functionals in
S(Lgyb[O,T]).

First, we state the definition of the multiple L, analytic GFFT of a
functional F on C, [0, T].
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DEFINITION 4.1. Let F be a measurable functional defined on C,
[0,T) and define a transform (T.,)™(F) (v > 0) of F by

(4.1) (Tw)(n)(F) = (Tyo---oT,)(F),

n—times

that is, (T%,)(™ means the n-times composition of T',, where T, is given
by (2.9) in Definition 2.2 and n is a nonnegative integer. When A is in
C., the transform (Ty)(™ (F) means the analytic extension of (T,)™ (F)
(v > 0) as the function of X € C,. ‘

Let (T»)(™(F) be an analytic extension of (T,)™ (F) as a function
of A € C,. In case that 1 < p < 2, for each ¢ € R — {0}, we define the

multiple L, analytic GFFT (TP (F) of F by
(4.2) (TPHYM(F) = Limao—i(Th) ™ (F),

where A\ approaches —iq through C, .
In case that p = 1, for each ¢ € R — {0}, we define the multiple L,
analytic GFFT (T{)™)(F) of F by

(4.3) (TD)P(F) = lim (T5)™(F),

A——igq
where A approaches —igq through C,.
Note that (T3)©(F) = F = (TP)O(F), (Ty)V(F) = Ty (F), and
(TP (F) = TP (F).

We have already shown that for F € S(L2,[0,T]) with condition

(3.4), the L, GFFT T” (F) belongs to the Banach algebra S(L2 ,[0,T}).
Hence by using the mathematical induction and proceeding as in the
proof of Theorem 3.1, we can obtain the following theorem.

THEOREM 4.1. Let gy be a nonzero real number and let n be a non-
negative integer. Let F' € S(L2 ,[0,T]) be given by (3.1) whose associ-
ated measure f satisfies the condition

(4.4) / gMexp{ N /()T!u(s)ldlal(s)}tdf(u)l<oo-
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Then for all p € [1,2] and all real ¢ with |q| > |qo|, the multiple L,
analytic GFFT (T{P)™(F) exists and is given by

(T ™ (F)(y)

for s-a.e. y € Cup[0,T]. Furthermore, (Tq(p))(”)(F) is an element of
S(LZ,[0,T]) with associated measure

. 3
on(E) ——-/ exp{ — 32(u2,b’) + m(z) (u,a')}df(u)
E 2q q
for E € B(L? b[O T)).
Note that (4.5) is reduced to (3.5), if we take n = 1 in (4.5).
Next, we obtain the GCP of the multiple L, analytic GFFT’s of
functionals in S(L2 [0, T)).

THEOREM 4.2. Let o be a nonzero real number and let n be a non-
negative integer. Let F and G be elements of S(LZ [0, T]) whose asso-
ciated measures f and g sat;jsfy the condition

o) [ on® { T | eielte }[1df<u>|+ldg<v)u<oo.

Then for all p € [1,2], all real ¢ with |q| > |qo| and a nonnegative integer
m, the GCP ((T{”)™(F) x (T{F)™)(G)),(y) exists and is given by
(4.7) below. Furthermore ((Tq(p))(") (F)* (Tq(p))(m)(G))q is an element of
S(L7 10, T1).

PRrROOF. By using (4.5) and (3.10) we observe that for all p € [1,2]
and all ¢ with |g| > |qo]
(4.7)
(TPYDF) + (TP)™(G))ly)

ex u+v,y) — — (Y 02 b
/L2 OT]/Lzb[OT p{ < > 2‘1( )= 2(]( )

off) () e

7

S URRR oy o ) baf g
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for s-a.e. y € Cy [0, T]. Furthermore, proceeding as in the proof of The-

orem 3.2 above and using (4.6), we see that (TP)™ (F)(T)™/(@)),
is an element of S(LZ [0, TY). O

Note that (4.7) is reduced to (3.10), if we take m = n = 0 in (3.10).

In our next theorem, we obtain the multiple L,, analytic GFFT of the
convolution product for two functionals in S(L2 ,[0,T7).

THEOREM 4.3. Let F', G, f, g and ¢y be as in Theorem 4.2. Then
for all p € [1,2] and all real q the following equation with |q| > |qo],

(T ™ (F * G)g) (y)

i
= eXp{—<U+v,y>
/Lg_b[o,:r] /Lg‘b[O,T] V2
i 3

(4.8) _Z&_((U_v)z’b/)ﬂ(%) (u—v,a')

1
2

_ _g.((u )2, 0) + m(é%) (u + v, a’)}df(u)dg(”)

holds for s-a.e. y € C,[0,T], where n is a nonnegative integer. Fur-
thermore, (Tq(p))(")((F * G)q)(y) is an element ofS(Lz’b[O, T)).

PRrROOF. By using equations (3.10) and (4.5), we can easily obtain
the equation (4.8) above. Moreover, the condition (4.6) will imply the
existence of the equation (4.8). O

Finally, we show that the L, analytic GFFT of the GCP of the multi-
ple L, analytic GFFT’s is a product of the multiple L, analytic GFFT’s

of the transforms for functionals in S(L2 ,[0,T7).

THEOREM 4.4. Let F, G, f, g, qo, n and m be as in Theorem 4.2.
Then for all p € [1,2] and all real q the following equation with |q| > |qo|,

TP (TP (F) + (TP)™(6)) o) ()

4.9
9 = (T UTEEN) W) TN ™ (TP (G o)) ()
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holds for s-a.e. y € Co[0,T], where Fy and *G, are as in (2.13). Also,
both expressions in (4.9) are given by the expression

i in+1), 5,
exps —=(u+v,y) — (u®,b")
‘/Lg‘b[O,T] /Lﬁyb[O,T] {\/5 2q
i(m+1), 5 () ,
——— (5, b)) +in| - u,a
% (v,0) . (u,a’)

+ zm(é—) %(v, a) + V2 (é—) : (u, a’)}df(u)dg(v).

Furthermore, the transform TP (TP)™(F) * (TP)™(G)),) is an
element of S(L2 ,[0, T)).

ProOF. By using (4.5), (3.10) and (3.5), we can obtain the equation
(4.9) above. O

REMARK 4.1. In Theorem 4.4 above, if a(t) = 0, then
(410)  (TE)®(TE(F)(-/v/2)) () = (TP) ™D (F)(y/V2)
and
(411)  (TEYMTEG)(/VD) () = (TFP) DG (y/V2).
Hence by using (3.26), (4.10) and (4.11) we obtain that

TP (TP M(F) * (TF)™(6))g) ()
= (TP) "D (F) (y/V2(TP) ™ D(G) (y/V2)

for s-a.e. y € Cy 5[0, 7.
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