• Title/Summary/Keyword: Banach fixed point theorem

Search Result 135, Processing Time 0.025 seconds

Existence Results for the Nonlinear First Order Fuzzy Neutral Integrodifferential Equations

  • Radhakrishnan, Bheeman;Nagarajan, Murugesan;Narayanamoorthy, Samayan
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.1
    • /
    • pp.87-98
    • /
    • 2013
  • In this paper, we devoted to study the existence and uniqueness of nonlinear fuzzy neutral integrodifferential equations. Moreover we study the fuzzy solution for the normal, convex, upper semicontinuous, and compactly supported interval fuzzy number. The results are obtained by using the Banach fixed-point theorem. An example is provided to illustrate the theory.

Existence and Stability Results on Nonlinear Delay Integro-Differential Equations with Random Impulses

  • Vinodkumar, Arumugam;Gowrisankar, Muthusamy;Mohankumar, Prathiban
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.431-450
    • /
    • 2016
  • In this paper, the existence, uniqueness, stability via continuous dependence and Ulam stabilities of nonlinear integro-differential equations with random impulses are studied under sufficient condition. The results are obtained by using Leray-Schauder alternative fixed point theorem and Banach contraction principle.

EXISTENCE AND STABILITY RESULTS OF GENERALIZED FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Kausika, C.;Balachandran, K.;Annapoorani, N.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.793-809
    • /
    • 2021
  • This paper gives sufficient conditions to ensure the existence and stability of solutions for generalized nonlinear fractional integrodifferential equations of order α (1 < α < 2). The main theorem asserts the stability results in a weighted Banach space, employing the Krasnoselskii's fixed point technique and the existence of at least one mild solution satisfying the asymptotic stability condition. Two examples are provided to illustrate the theory.

HAUSDORFF TOPOLOGY INDUCED BY THE FUZZY METRIC AND THE FIXED POINT THEOREMS IN FUZZY METRIC SPACES

  • WU, HSIEN-CHUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1287-1303
    • /
    • 2015
  • The Hausdorff topology induced by a fuzzy metric space under more weak assumptions is investigated in this paper. Another purpose of this paper is to obtain the Banach contraction theorem in fuzzy metric space based on a natural concept of Cauchy sequence in fuzzy metric space.

A FIXED POINT APPROACH TO STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

  • Kim, Chang Il;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.453-464
    • /
    • 2016
  • In this paper, we investigate the solution of the following functional inequality $$N(f(x)+f(y)+f(z),t){\geq}N(f(x+y+z),mt)$$ for some fixed real number m with $\frac{1}{3}$ < m ${\leq}$ 1 and using the fixed point method, we prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.

APPROXIMATION METHODS FOR SOLVING SPLIT EQUALITY OF VARIATIONAL INEQUALITY AND f, g-FIXED POINT PROBLEMS IN REFLEXIVE BANACH SPACES

  • Yirga Abebe Belay;Habtu Zegeye;Oganeditse A. Boikanyo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.135-173
    • /
    • 2023
  • The purpose of this paper is to introduce and study a method for solving the split equality of variational inequality and f, g-fixed point problems in reflexive real Banach spaces, where the variational inequality problems are for uniformly continuous pseudomonotone mappings and the fixed point problems are for Bregman relatively f, g-nonexpansive mappings. A strong convergence theorem is proved under some mild conditions. Finally, a numerical example is provided to demonstrate the effectiveness of the algorithm.

INVESTIGATION OF A NEW COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS IN FRAME OF HILFER-HADAMARD

  • Ali Abd Alaziz Najem Al-Sudani;Ibrahem Abdulrasool hammood Al-Nuh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.501-515
    • /
    • 2024
  • The primary focus of this paper is to thoroughly examine and analyze a coupled system by a Hilfer-Hadamard-type fractional differential equation with coupled boundary conditions. To achieve this, we introduce an operator that possesses fixed points corresponding to the solutions of the problem, effectively transforming the given system into an equivalent fixed-point problem. The necessary conditions for the existence and uniqueness of solutions for the system are established using Banach's fixed point theorem and Schaefer's fixed point theorem. An illustrate example is presented to demonstrate the effectiveness of the developed controllability results.

Some Nonlinear Alternatives in Banach Algebras with Applications II

  • Dhage, B.C.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.281-292
    • /
    • 2005
  • In this paper a nonlinear alternative of Leray-Schauder type is proved in a Banach algebra involving three operators and it is further applied to a functional nonlinear integral equation of mixed type $$x(t)=k(t,x({\mu}(t)))+[f(t,x({\theta}(t)))]\(q(t)+{\int}_0{^{\sigma}^{(t)}}v(t,s)g(s,x({\eta}\(s)))ds\)$$ for proving the existence results in Banach algebras under generalized Lipschitz and $Carath{\acute{e}}odory$ conditions.

  • PDF