• Title/Summary/Keyword: Banach fixed point theorem

Search Result 135, Processing Time 0.025 seconds

CONTROLLABILITY OF SECOND ORDER SEMI-LINEAR NEUTRAL IMPULSIVE DIFFERENTIAL INCLUSIONS ON UNBOUNDED DOMAIN WITH INFINITE DELAY IN BANACH SPACES

  • Chalishajar, Dimplekumar N.;Acharya, Falguni S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.813-838
    • /
    • 2011
  • In this paper, we prove sufficient conditions for controllability of second order semi-linear neutral impulsive differential inclusions on unbounded domain with infinite delay in Banach spaces using the theory of strongly continuous Cosine families. We shall rely on a fixed point theorem due to Ma for multi-valued maps. The controllability results in infinite dimensional space has been proved without compactness on the family of Cosine operators.

MODULE DERIVATIONS ON COMMUTATIVE BANACH MODULES

  • Amini, Massoud;Bodaghi, Abasalt;Shojaee, Behrouz
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.891-906
    • /
    • 2020
  • In this paper, the commutative module amenable Banach algebras are characterized. The hereditary and permanence properties of module amenability and the relations between module amenability of a Banach algebra and its ideals are explored. Analogous to the classical case of amenability, it is shown that the projective tensor product and direct sum of module amenable Banach algebras are again module amenable. By an application of Ryll-Nardzewski fixed point theorem, it is shown that for an inverse semigroup S, every module derivation of 𝑙1(S) into a reflexive module is inner.

EFFECT OF PERTURBATION IN THE SOLUTION OF FRACTIONAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • ABDO, MOHAMMED. S.;PANCHAL, SATISH. K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.63-74
    • /
    • 2018
  • In this paper, we study the initial value problem for neutral functional differential equations involving Caputo fractional derivative of order ${\alpha}{\in}(0,1)$ with infinite delay. Some sufficient conditions for the uniqueness and continuous dependence of solutions are established by virtue of fractional calculus and Banach fixed point theorem. Some results obtained showed that the solution was closely related to the conditions of delays and minor changes in the problem. An example is provided to illustrate the main results.

EXISTENCE AND CONTROLLABILITY OF IMPULSIVE FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL EQUATION WITH STATE DEPENDENT INFINITE DELAY VIA SECTORIAL OPERATOR

  • MALAR, K.;ILAVARASI, R.;CHALISHAJAR, D.N.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.151-184
    • /
    • 2022
  • In the article, we handle with the existence and controllability results for fractional impulsive neutral functional integro-differential equation in Banach spaces. We have used advanced phase space definition for infinite delay. State dependent infinite delay is the main motivation using advanced version of phase space. The results are acquired using Schaefer's fixed point theorem. Examples are given to illustrate the theory.

CAPUTO-FABRIZIO FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS VIA NEW DHAGE ITERATION METHOD

  • NADIA BENKHETTOU;ABDELKRIM SALIM;JAMAL EDDINE LAZREG;SAID ABBAS;MOUFFAK BENCHOHRA
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.211-222
    • /
    • 2023
  • In this paper, we study the following hybrid Caputo-Fabrizio fractional differential equation: 𝐶𝓕α𝕯θϑ [ω(ϑ) - 𝕱(ϑ, ω(ϑ))] = 𝕲(ϑ, ω(ϑ)), ϑ ∈ 𝕵 := [a, b], ω(α) = 𝜑α ∈ ℝ, The result is based on a Dhage fixed point theorem in Banach algebra. Further, an example is provided for the justification of our main result.

ON A TYPE OF DIFFERENTIAL CALCULUS IN THE FRAME OF GENERALIZED HILFER INTEGRO-DIFFERENTIAL EQUATION

  • Mohammed N. Alkord;Sadikali L. Shaikh;Mohammed B. M. Altalla
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.83-98
    • /
    • 2024
  • In this paper, we investigate the existence and uniqueness of solutions to a new class of integro-differential equation boundary value problems (BVPs) with ㄒ-Hilfer operator. Our problem is converted into an equivalent fixed-point problem by introducing an operator whose fixed points coincide with the solutions to the given problem. Using Banach's and Schauder's fixed point techniques, the uniqueness and existence result for the given problem are demonstrated. The stability results for solutions of the given problem are also discussed. In the end. One example is provided to demonstrate the obtained results

EXISTENCE AND APPROXIMATE SOLUTION FOR THE FRACTIONAL VOLTERRA FREDHOLM INTEGRO-DIFFERENTIAL EQUATION INVOLVING ς-HILFER FRACTIONAL DERIVATIVE

  • Awad T. Alabdala;Alan jalal abdulqader;Saleh S. Redhwan;Tariq A. Aljaaidi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.989-1004
    • /
    • 2023
  • In this paper, we are motivated to evaluate and investigate the necessary conditions for the fractional Volterra Fredholm integro-differential equation involving the ς-Hilfer fractional derivative. The given problem is converted into an equivalent fixed point problem by introducing an operator whose fixed points coincide with the solutions to the problem at hand. The existence and uniqueness results for the given problem are derived by applying Krasnoselskii and Banach fixed point theorems respectively. Furthermore, we investigate the convergence of approximated solutions to the same problem using the modified Adomian decomposition method. An example is provided to illustrate our findings.

WEAKLY RELAXED $\alpha$-SEMI-PSEUDOMONOTONE SET- VALUED VARIATIONAL-LIKE INEQUALITIES

  • Lee, Byung-Soo;Lee, Bok-Doo
    • The Pure and Applied Mathematics
    • /
    • v.11 no.3
    • /
    • pp.231-242
    • /
    • 2004
  • In this paper, we introduce weakly relaxed $\alpha$-pseudomonotonicity and weakly relaxed $\alpha$-semi-pseudomonotonicity of set-valued maps. Using the KKM technique, we obtain existence of solutions to the variational-like inequalities with weakly relaxed $\alpha$-pseudomor.otone set-valued maps in reflexive Banach spaces. We also present the solvability of the variational-like inequalities with weakly relaxed $\alpha$-semi-pseudomonotone set-valued maps in arbitrary Banach spaces using Kakutani-Fan-Glicksberg fixed point theorem.

  • PDF

Fixed points of a certain class of mappings in uniformly convex banach spaces

  • Thakur, Balwant-Singh;Dep
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.385-394
    • /
    • 1997
  • In this paper, we prove in p-uniforlmy convex space a fixed point theorem for a class of mappings T satsfying: for each x, y in the domain and for n = 1, 2, 3, $\cdots$, $$ \left\$\mid$ T^n x - T^n y \right\$\mid$ \leq a \cdot \left\$\mid$ x - y \right\$\mid$ + b(\left\$\mid$ x - T^n x \right\$\mid$ + \left\$\mid$ y - T^n y \right\$\mid$) + c(\left\$\mid$ c - T^n y \right\$\mid$ + \left\$\mid$ y - T^n x \right\$\mid$, $$ where a, b, c are nonnegative constants satisfying certain conditions. Further we establish some fixed point theorems for these mappings in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{p,k}$ for 1 < p < $\infty$ and k $\leq$ 0. As a consequence of our main result, we also the results of Goebel and Kirk [7], Lim [8], Lifshitz [12], Xu [20] and others.

  • PDF