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EQUATIONS VIA NEW DHAGE ITERATION METHOD

NADIA BENKHETTOU, ABDELKRIM SALIM∗, JAMAL EDDINE LAZREG, SAÏD
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Abstract. In this paper, we study the following hybrid Caputo-Fabrizio

fractional differential equation:

CF
a Dθ

ϑ [ω(ϑ)− F(ϑ, ω(ϑ))] = G(ϑ, ω(ϑ)), ϑ ∈ J := [a, b],

ω(a) = φa ∈ R,

The result is based on a Dhage fixed point theorem in Banach algebra.

Further, an example is provided for the justification of our main result.
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1. Introduction

Fractional differential equations appear in many applications of real world
problem, for example, in electromagnetic, in economy, in biology, etc ([3, 4, 19]).
In [7], Akhadkulov et al. discussed via a new version of Kransoselskii-type fixed-
point theorem under a nonlinear D-contraction condition (see, Dhage version
of Kransoselskii-type fixed-point theorem [9]) the following fractional hybrid
differential equation involving the Riemann-Liouville differential and integral
operators of orders 0 < λ < 1 and γ > 0:{

Dλ[ϖ(ε)− Φ(ε,ϖ(ε))] = Ψ (ε,ϖ(ε), Iγ(ϖ(ε))) , a.e. ε ∈ J, γ > 0,
ϖ (ε0) = ϖ0,

where J = [ε0, ε0 + ℓ], for some fixed ε0 ∈ R and ℓ > 0 and Φ ∈ C(J×R,R),Ψ ∈
C(J × R2,R). In [15], the authors considered the functional integro-differential
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equations of fractional order

dϱ

dεϱ
[ϖ(ε)− Φ(ε,ϖ(ε))] = Ψ

(
ε,

∫ ε

0

Υ(s,ϖs)

)
ds, ε ∈ R+,

where 0 < ϱ < 1, ϖε : R+ → R,Φ(ε,ϖ) = Φ : R+ × R → R,Ψ(ε,ϖ) = Ψ :
R+×R → R. Dhage and Jadhav [14] studied the existence of solution for hybrid
differential equation:{

d

d
[ϖ(ε)− Φ(ε,ϖ(ε))] = Ψ(ε,ϖ(ε)), ε ∈ J,

ϖ (ε0) = ϖ0 ∈ R,

where Φ,Ψ ∈ C(J × R,R\{0}). In [18], Lu et al. established, under the φ
-Lipschitz contraction condition, the existence result for the following fractional
hybrid differential problems via the Riemann-Liouville derivative of order 0 <
ξ < 1 : {

Dξ[ϖ(ε)− Φ(ε,ϖ(ε))] = Ψ(ε,ϖ(ε)), a.e. ε ∈ J,
ϖ (ε0) = ϖ0 ∈ R,

where Φ,Ψ ∈ C(J× R,R).
On the other hand, fractional-order differential equations with the Caputo-

Fabrizio (in short C.F) derivative have been paid more and more attentions from
2015. (see [1, 2, 5, 6, 8, 16, 17]). In this article, we investigate the following
hybrid fractional differential equations (in short HFDE):

CF
a Dθ

ϑ [ω(ϑ)− F(ϑ, ω(ϑ))] = G(ϑ, ω(ϑ)), ϑ ∈ J := [a, b],

ω(a) = φa,
(1)

where b > a > 0, F,G : J × R → R are given functions and CF
a Dθ

ϑ is the C.F
derivative of order θ ∈ (0, 1).

We prove the existence of a solution for HFDE (1) using a Dhage fixed point
theorem in Banach algebra (see [11]). This article is orderly as follows: In
Section 2, we present some definitions and results are presented. In Section 3,
we develop the monotone iterative technique and prove the existence of solution
for the problem (1) by using Dhage fixed point theorem (Theorem 2.6). In the
fourth section, an example is constructed to illustrate the applicability of the
proved results.

2. Preliminaries

Let us introduce the Banach spaces C := {f : J → R, f is continuous}, with
the norm

∥ϕ∥∞ = sup
ϑ∈J

|ϕ(ϑ)|,

and

L1(J,R) := {f : J → R, f is measurable and Lebesgue integrable},
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with the norm

∥ϕ∥L1 =

∫ b

a

|ϕ(ϑ)|dϑ.

Let us denote Y(θ) :=
2

(2− θ)R(θ)
.

Definition 2.1 ([8, 2, 1, 17]). Let 0 < θ < 1 and R(θ) be a normalization
function such that R(0) = R(1) = 1. We define the C.F fractional integral of
order θ for a function χ ∈ L1(I) by

CFIθχ(ϑ) = (1− θ)Y(θ)χ(ϑ) + θY(θ)
∫ ϑ

0

χ(s)ds, ϑ ≥ 0.

Definition 2.2 ([8, 2, 1, 17]). Let 0 < θ < 1 and χ ∈ C1(I). We define the C.F
fractional derivative for a function χ of order θ by

CFDθχ(ϑ) =
1

(1− θ)Y(θ)

∫ ϑ

0

exp(− θ

1− θ
(ϑ− s))χ′(s)ds; ϑ ∈ I.

Remark 2.1. (CFDθ)(χ) = 0 ⇐⇒ χ = Cst.

Definition 2.3. A mapping K : Ξ → Ξ is called:

(i) isotone or monotone nondecreasing if it preserves the order relation
⪯,
i.e. if ω ⪯ ϖ ⇒ Kω ⪯ Kϖ for all ω,ϖ ∈ Ξ;

(ii) monotone nonincreasing if ω ⪯ ϖ ⇒ Kω ⪰ Kϖ for all ω,ϖ ∈ Ξ;
(iii) monotone if it is either monotone nondecreasing or monotone nonin-

creasing on Ξ.

Definition 2.4 ([12]). Let Ξ on a normed linear space. An operator K : Ξ → Ξ
is called:

(i) compact if K(Ξ) is a relatively compact subset of Ξ.
(ii) totally bounded if for any bounded subset S of Ξ, K(S) is a relatively

compact subset of Ξ.
(iii) completely continuous on Ξ if K is continuous and totally bounded.

Definition 2.5 (Partially nonlinear D-Lipschitz mapping [12]). Let (Ξ,⪯, ∥ · ∥)
be a partially ordered normed linear space. A mapping K : Ξ → Ξ is called:

(i) partially nonlinear D-Lipschitz if there exists an upper semi-continuous
nondecreasing function Υ : R+ → R+ such that Υ(0) = 0 and

∥Kξ −Kζ∥ ≤ Υ(∥ξ − ζ∥) (2)

for all comparable elements ξ, ζ ∈ Ξ;
(ii) partially Lipschitz if Υ(r) = ℓr where ℓ > 0, with a Lipschitz constant

ℓ;
(iii) partially contraction with contraction constant ℓ if ℓ < 1;
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(iv) nonlinear D-contraction if it is a nonlinear D-Lipschitz with Υ(r) < r
for r > 0.

Theorem 2.6 ([11]). Let
(
Ξ,⪯, ∥ · ∥

)
be a regular partially ordered complete

normed linear space such that the order relation ⪯ and the norm ∥ · ∥ are com-
patible in Ξ. Let Ψ,Φ : Ξ → Ξ be two nondecreasing operators such that

(i) Ψ is partially bounded and partially nonlinear D-contraction,
(ii) Φ is partially continuous and partially compact, and
(iii) there exists an element ω0 ∈ Ξ such that ω0 ⪯ Ψω0 + Φω0 or ω0 ⪰

Ψω0 +Φω0.

Then, the operator equation Ψω + Φω = ω has a solution ω∗ in Ξ and the
sequence {ωn} of successive iterations defined by ωn+1 = Ψωn + Φωn, n =
0, 1, . . ., converges monotonically to ω∗.

3. Existence of Solutions

Definition 3.1. A function u ∈ C(J,R) is said to be a lower solution of the
HFDE (1) if it satisfies{

CF
aDθ

τ [ω(ϑ)− F(ϑ, ω(ϑ))] ≤ G(ϑ, ω(θ)),

ω(a) ≤ φa,
(3)

for all τ ∈ J. Similarly, an upper solution v ∈ C(J,R) for the HFDE (1) is
defined on J by reversing the order.

Definition 3.2. A function ω ∈ C(J,R) is said to be a solution of HFDE (1) if
it satisfies equation

CF
a Dθ

τ [ω(ϑ)− F(ϑ, ω(ϑ))] = G(ϑ, ω(ϑ)), (4)

on J, and the condition ω(a) = φa.

Let us introduce the following assumptions:

(CI) The functions F,G : J× R −→ R are continuous.
(CII) The functions F,G are nondecreasing in ω, for all ϑ ∈ J.
(CIII) There exist constants ∆F,∇G > 0 such that

|F(ϑ, ω)| ≤ ∆F,

|G(ϑ, ω)| ≤ ∇G,
(5)

for all ϑ ∈ J and ω ∈ R.
(CIV) There exists a D−contraction Ω such that

0 ≤ F(ϑ, ω)− F(ϑ,ϖ) ≤ Ω(ω −ϖ),

for all ϑ ∈ J and ω,ϖ ∈ R, with ω ≥ ϖ.
(CV) There exists a lower solution υ ∈ C(J,R) of problem (1), that is{

CF
aDθ

τ [υ(ϑ)− F(ϑ, υ(ϑ))] ≤ G(ϑ, υ(ϑ)),

υ(a) ≤ φa.
(6)
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Lemma 3.3 ([1]). Let α ∈ (0, 1]. For a given continuous function H : G → R,
a function ω ∈ C(J,R) is a solution of the Cauchy problem{CF

aDθ
ϑω(ϑ) = H(ϑ), ϑ ∈ J,

ω(a) = φa ∈ R,
(7)

if and only if it is a solution of the nonlinear integral equation

ω(ϑ) = φa + A(θ) (H(ϑ)− H(a)) +B(θ)

∫ ϑ

a

H(s)ds, (8)

where

A(θ) = (1− θ)Y(θ), B(θ) = θY(θ).

Theorem 3.4. Suppose that (CI) − (CV) are satisfied. Then, the fractional
Cauchy problem (1) has a solution ω∗ defined on J and the sequence {ωn}∞n=0 of
successive approximations given by

ω0 = u(ϑ),

ωn+1(ϑ) = F(ϑ, ωn(ϑ)) + φa − F(a, φa)

+A(θ) [G(ϑ, ωn(ϑ))−G(a, φa)] +B(θ)
∫ ϑ

a
G(σ, ωn(σ))dσ,

(9)

i.e.
ω0(ϑ) = u(ϑ),

ωn+1(ϑ) = F(ϑ, ωn(ϑ)) + φa − F(a, φa)

+(1− θ)Y(θ) [G(ϑ, ωn(ϑ))−G(a, φa)] + θY(θ)
∫ ϑ

a
G(σ, ωn(σ))dσ

(10)
converges monotonically to ω∗.

Proof. Ξ = C(J,R) is a partially ordered Banach space. Then, consider the
equivalent operator equation

Ψω(ϑ) + Φω(ϑ) = ω(ϑ),

where

Ψω(ϑ) = F(ϑ, ω(ϑ)), (11)

and
Φω(ϑ) = φa − F(a, φa) + (1− θ)Y(θ) [G(ϑ, ω(ϑ))−G(a, φa)]

+ θY(θ)
∫ ϑ

a

G(σ, ω(σ))dσ,
(12)

for ϑ ∈ J.
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Step I: Ψ and Φ are nondecreasing operators on Ξ.
Let ω,ϖ ∈ Ξ where ω ≥ ϖ. Then, by hypothesis (CII) and for ϑ ∈ J, we get

ω(ϑ) ≥ ϖ(ϑ) =⇒ F(ϑ, ω(ϑ)) ≥ F(ϑ,ϖ(ϑ))

=⇒ Ψω(ϑ) ≥ Ψϖ(ϑ).

Then, Ψ is a nondecreasing operator on Ξ into Ξ. For ϑ ∈ J and by (CII), we
get

Φω(ϑ)− Φϖ(ϑ) = (1− θ)Y(θ) [G(ϑ, ω(ϑ))−G(ϑ,ϖ(ϑ))]

+ θY(θ)
∫ ϑ

a

[G(σ, ω(σ))−G(σ,ϖ(σ))] dσ ≥ 0.

Then, Φ is nondecreasing operator on Ξ into Ξ.
Step II: Ψ is a partially bounded and partially nonlinear D-contraction op-

erator on Ξ. Let ω ∈ Ξ, then for ϑ ∈ J and by (CIII) , we get

|Ψω(ϑ)| = |F(ϑ, ω(ϑ))| ≤ ∆F.

Thus,

∥ Ψω ∥≤ ∆F.

Then, Ψ is bounded on Ξ and so partially bounded.
On the other hand, let ω,ϖ ∈ Ξ where ω ≥ ϖ. Then, for ϑ ∈ J, by hypothesis
(CIV), we get

|Ψω(ϑ)−Ψϖ(ϑ)| = |F(ϑ, ω(ϑ))− F(ϑ,ϖ(ϑ))|
≤ Ω(|ω(ϑ)−ϖ(ϑ)|)
≤ Ω(∥ω −ϖ∥).

Then, for each ω,ϖ ∈ Ξ where ω ≥ ϖ, we get

∥Ψω −Ψϖ∥ ≤ Ω(∥ω −ϖ∥).

Thus, Ψ is a partially nonlinear D−contraction on Ξ and, thus partially contin-
uous.

Step III: Φ is a partially continuous on Ξ.
Let {ωn} be a sequence of elements of a chain C in Ξ such that ωn → ω∗ for
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each n ∈ N. Then, by (CI) and the dominated convergence theorem, we get

lim
n→∞

(Φωn)(ϑ) = lim
n→∞

[
φa − F(a, φa) + (1− θ)Y(θ) [G(ϑ, ωn(ϑ))−G(a, φa)]

+ θY(θ)
∫ ϑ

a

G(σ, ωn(σ))dσ
]

= φa − F(a, φa) + (1− θ)Y(θ)
[
lim
n→∞

G(ϑ, ωn(ϑ))−G(a, φa)
]

+ θY(θ)
∫ ϑ

a

[
lim
n→∞

G(ϑ, ωn(τ))
]
dσ

= φa − F(a, φa) + (1− θ)Y(θ) [G(ϑ, ω∗(ϑ))−G(a, φa)]

+ θY(θ)
∫ ϑ

a

G(σ, ω∗(σ))dσ

= (Φω∗)(ϑ),

for all ϑ ∈ J. This shows that {Φωn} converges to Φω∗ pointwise on J and and
the convergence is monotonic by the property of G.
Next, we will show that {Φωn} is an equicontinuous sequence of functions in Ξ.
Let ϑ1, ϑ2 ∈ J be arbitrary with ϑ1 < ϑ2. Then, by (CIII) we have

|Φωn (ϑ2)− Φωn (ϑ1)| ≤ (1− θ)Y(θ) |G(ϑ2, ωn(ϑ2))−G(ϑ1, ωn(ϑ1))|

+ θY(θ)

∣∣∣∣∣
∫ ϑ2

a

G (σ, ωn(σ)) dσ −
∫ ϑ1

a

G (σ, ωn(σ)) dσ

∣∣∣∣∣
≤ (1− θ)Y(θ) |G(ϑ2, ωn(ϑ2))−G(ϑ1, ωn(ϑ1))|

+ θY(θ)
∫ ϑ2

ϑ1

|G (σ, ωn(σ))| dσ

≤ (1− θ)Y(θ) |G(ϑ2, ωn(ϑ2))−G(ϑ1, ωn(ϑ1))|
+∇GθY(θ)(ϑ2 − ϑ1).

Then, we have

|Φωn (ϑ2)− Φωn (ϑ1)| → 0 as ϑ2 → ϑ1

uniformly for all n ∈ N. This shows that the convergence Φωn → Φω∗ is uni-
formly and hence Φ is a partially continuous on Ξ.

Step IV: Φ is a partially compact on Ξ.
Let C be a chain in Ξ. We shall show that Φ(C) is uniformly bounded and
equicontinuous in Ξ. Let ω̃ ∈ Φ(C) be arbitrary. We have ω̃ = Φ(ω) for some
ω ∈ C, and by (CIII), we get
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ω̃(ϑ) = |Φω(ϑ)|
≤ |φa − F(a, φa)|+ (1− θ)Y(θ) |G(ϑ, ω(ϑ))− F(a, φa)|

+ θY(θ)
∫ ϑ

a

|G(σ, ω(σ))| dσ

≤ |φa − F(a, φa)|+ 2(1− θ)Y(θ)∇G + θY(θ)∇G(b− a) := M,

for all ϑ ∈ J. Taking the supremum over ϑ, we obtain ∥ω̃∥ = ∥Φω∥ ≤ M for each
ω̃ ∈ Φ(C). Hence, Φ(C) is a uniformly bounded subset of Ξ.
Next, we will show that Φ(C) is an equicontinuous set in Ξ. Let ϑ1, ϑ2 ∈ J where
ϑ1 < ϑ2. Then, by (CIII) we get

|Φω (ϑ2)− Φω (ϑ1)| ≤ (1− θ)Y(θ) |G(ϑ2, ω(ϑ2))−G(ϑ1, ω(ϑ1))|

+ θY(θ)

∣∣∣∣∣
∫ ϑ2

a

G (σ, ω(σ)) dσ −
∫ ϑ1

a

G (σ, ω(σ)) dσ

∣∣∣∣∣
≤ (1− θ)Y(θ) |G(ϑ2, ω(ϑ2))−G(ϑ1, ω(ϑ1))|

+ θY(θ)
∫ ϑ2

ϑ1

|G (σ, ω(σ))| dσ

≤ (1− θ)Y(θ) |G(ϑ2, ωn(ϑ2))−G(ϑ1, ωn(ϑ1))|
+ θY(θ)∇G(ϑ2 − ϑ1).

Then, we have

|Φω (ϑ2)− Φω (ϑ1)| → 0 as ϑ1 → ϑ2

uniformly for all ω ∈ C. This shows that Φ(C) is an equicontinuous set in Ξ.
Hence Φ(C) is compact subset of Ξ and consequently Φ is a partially compact
operator on Ξ into itself.

Step V: υ satisfies the operator inequality υ ≤ Φυ. Since the hypothesis
(CV) holds, ω is a lower solution of (1) defined on J, i.e{

CF
aDθ

τ [υ(ϑ)− F(ϑ, υ(ϑ))] ≤ G(ϑ, υ(ϑ))

υ(a) ≤ φa,

for all ϑ ∈ J. By integrating of inequality

CF
aDθ

τ [υ(ϑ)− F(ϑ, υ(ϑ))] ≤ G(ϑ, υ(ϑ)), (13)

from a to ϑ, we get

υ(ϑ) ≤ F(ϑ, υ(ϑ)) + φa − F(a, φa) + (1− θ)Y(θ) [G(ϑ, ω(ϑ))−G(a, φa)]

+θY(θ)
∫ ϑ

a

G(σ, ω(σ))dσ,

for all ϑ ∈ J. This show that υ is a lower solution of the operator inequality υ ≤
Ψυ+Φυ. Thus Ψ and Φ satisfies all conditions in Theorem 2.6. We conclude that
the operator equation Ψω + Φω = ω has a solution. Furthermore, the sequence
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{ωn} of successive approximations defined by (10) converges monotonically to
ω∗. □

4. An Example

Consider the following hybrid fractional Cauchy problem:

CF
0D

1
2

ϑ

[
ω(ϑ)− 1

25

(
ω(ϑ)

5 + ω(ϑ)
+ 2

)]
= π +

1

4
e−ϑ arctanω(ϑ), ϑ ∈ J = [0, 1],

(14)
ω(0) = φ0 ∈ R. (15)

Set

F(ϑ, ω) =
1

25

(
ω

5 + ω
+ 2

)
,

and

G(ϑ, ω) = π +
1

4
e−ϑ arctanω,

for all ϑ ∈ J, ω ∈ R. Clearly, the functions F and G are jointly continuous and
nondecreasing in ω for all ϑ ∈ J. Then conditions (CI) and (CII) are satisfies.

Furthermore, the functions F and G satisfy the condition (CIII) with ∆F =
13

150

and ∇G =
9π

8
. On the other hand, let ω,ϖ ∈ R where ω ≥ ϖ, and ϑ ∈ J, then,

0 ≤ F(ϑ, ω)− F(ϑ,ϖ) =
1

25

[
ω

5 + ω
− ϖ

5 +ϖ

]
=

1

5

[
ω −ϖ

(5 + ω)(5 +ϖ)

]
≤ 1

5
(ω −ϖ)

= Ω(ω −ϖ),

for all ϑ ∈ J, where Ω : R+ → R+ defined by Ω(ϑ) =
1

5
ϑ < ϑ, ϑ > 0, is a

D−contraction. This shows that the function F satisfies the condition (CIV).
Finally, υ(ϑ) = 0, if ϑ ∈ [0, 1], is a lower solution of the HFDE (14) defined

on J. Indeed,

0 = υ(ϑ) ≤ F(ϑ, 0) + φ0 − F(0, φ0) +

(
1− 1

2

)
Y
(
1

2

)
[G(ϑ, 0)−G(0, φ0)]

+
1

2
Y
(
1

2

)∫ ϑ

0

G(σ, 0)dσ

≤ 2

25
− 1

25

[
φ0

5 + φ0
+ 2

]
+ φ0 + Y

(
1

2

)[
π

2
− 1

8
arctanφ0

]
≤ φ0 −

φ0

25(5 + φ0)
+ Y

(
1

2

)[
π

2
− 1

8
arctanφ0

]
,
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for some φ0 ∈ R. Then, the condition (CV) is true. Thus, all conditions, (CI)−
(CV), are satisfied. It follows from Theorem 3.4 that the problem (14)-(15) as
a solution solution ω∗ on J = [0, 1], which is a limit of the monotone sequence
(ωn), n = 0, 1, . . . , defined by

ω0(ϑ) = φ0, for ϑ ∈ [0, 1],

where φ0 −
φ0

25(5 + φ0)
+ Y

(
1

2

)[
π

2
− 1

8
arctanφ0

]
≥ 0 and{

ωn+1(ϑ) = F(ϑ, ωn(ϑ)) + φ0 − F(0, φ0)

+ 1
2Y

(
1
2

)
[G(ϑ, ωn(ϑ))−G(0, φ0)] +

1
2Y

(
1
2

) ∫ ϑ

0
G(σ, ωn(σ))dσ.
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20000 Säıda, Algeria.
e-mail: abbasmsaid@yahoo.fr, said.abbas@univ-saida.dz



222 N. Benkhettou, A. Salim, J.E. Lazreg, S. Abbas, M. Benchohra

Mouffak Benchohra is a Full Professor at the department of mathematics, Djillali Li-

abes University of Sidi Bel Abbes since October 1994. Benchohra received the master’s
degree in Nonlinear Analysis from Tlemcen University, Algeria, 1994 and Ph.D. degree in

Mathematics from Djillali Liabes University, Sidi Bel Abbes, Algeria. His research fields

include fractional differential equations, evolution equations and inclusions, control theory
and applications, etc.

Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, Sidi

Bel-Abbès 22000, Algeria.
e-mail: benchohra@yahoo.com


