• Title/Summary/Keyword: Balanced Amplifier

Search Result 80, Processing Time 0.024 seconds

Design of an High Efficiency Pallet Power Amplifier Module (S-대역 고효율 Pallet 전력증폭기 모듈 설계)

  • Choi, Gil-Wong;Kim, Hyoung-Jong;Choi, Jin-Joo;Choi, Jun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1071-1079
    • /
    • 2010
  • This paper describes the design and fabrication of a high-efficiency GaN HEMT(Gallium Nitride High-electron Mobility Transistor) Pallet power amplifier module for S-band phased array radar applications. Pallet amplifier module has a series 2-cascaded power amplifier and the final amplification-stage consists of balanced GaN HEMT transistor. In order to achieve high efficiency characteristic of pallet power amplifier module, all amplifiers are designed to the switching-mode amplifier. We performed with various PRF(Pulse Repetition Frequency) of 1, 10, 100 and 1000Hz at a fixed pulse width of $100{\mu}s$. In the experimental results, the output power, gain, and drain efficiency(${\eta}_{total}$) of the Pallet power amplifier module are 300W, 33dB, and 51% at saturated output power of 2.9GHz, respectively.

High Efficiency Power Amplifier using Analog Predistorter (아날로그 전치왜곡기를 이용한 고효율 전력증폭기)

  • Choi, Jang-Hun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2014
  • This paper presents the Doherty power amplifier with a digitally controlled analog predistorter circuit of Scintera Corp. to produce high power efficiency and high linearity performance. The analog predistorter improves the linearity performance because of controlling amplitude and phase values of input signal in order to improve intermodulation performance of power amplifier. Also, the power amplifier is designed by the Doherty technology to obtain the high efficiency performance. To validate the Scintera's analog predistorter, we are implemented the power amplifier with Doherty method at center frequency 2150 MHz. Compared with the balanced amplifier, the power amplifier is improved above 11% enhanced efficiency and more than 15 dB ACPR improvement.

Design of a New Harmonic Noise Frequency Filtering Down-Converter in InGaP/GaAs HBT Process

  • Wang, Cong;Yoon, Jae-Ho;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.98-104
    • /
    • 2009
  • An InGaP/GaAs MMIC LC VCO designed with Harmonic Noise Frequency Filtering(HNFF) technique is presented. In this VCO, internal inductance is found to lower the phase noise, based on an analytic understanding of phase noise. This VCO directly drives the on-chip double balanced mixer to convert RF carrier to IF frequency through local oscillator. Furthermore, final power performance is improved by output amplifier. This paper presents the design for a 1.721 GHz enhanced LC VCO, high power double balance mixer, and output amplifier that have been designed to optimize low phase noise and high output power. The presented asymmetric inductance tank(AIT) VCO exhibited a phase noise of -133.96 dBc/Hz at 1 MHz offset and a tuning range from 1.46 GHz to 1.721 GHz. In measurement, on-chip down-converter shows a third-order input intercept point(IIP3) of 12.55 dBm, a third-order output intercept point(OIP3) of 21.45 dBm, an RF return loss of -31 dB, and an IF return loss of -26 dB. The RF-IF isolation is -57 dB. Also, a conversion gain is 8.9 dB through output amplifier. The total on-chip down-converter is implanted in 2.56${\times}$1.07 mm$^2$ of chip area.

An MMIC Broadband Image Rejection Downconverter Using an InGaP/GaAs HBT Process for X-band Application

  • Lee Jei-Young;Lee Young-Ho;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • In this paper, we demonstrate a fully integrated X-band image rejection down converter, which was developed using InGaP/GaAs HBT MMIC technology, consists of two single-balanced mixers, a differential buffer amplifier, a differential YCO, an LO quadratue generator, a three-stage polyphase filter, and a differential intermediate frequency(IF) amplifier. The X-band image rejection downconverter yields an image rejection ratio of over 25 dB, a conversion gain of over 2.5 dB, and an output-referred 1-dB compression power$(P_{1dB,OUT})$ of - 10 dBm. This downconverter achieves broadband image rejection characteristics over a frequency range of 1.1 GHz with a current consumption of 60 mA from a 3-V supply.

A Study on the Lens Amplifier for Wideband Spatial Power Combining (광대역 공간 전력 합성을 위한 렌즈 증폭기에 관한 연구)

  • Kwon Oh-Sun;Kwon Se-Woong;Lee Byoung-Moo;Yoon Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.483-489
    • /
    • 2006
  • In this paper, new wideband lens amplifiers are proposed for C-band wireless communication service. In order to obtain the wideband property, all components of the proposed lens amplifiers are designed with balanced structure and wideband characteristics. Fat dipole antenna as the input and output antenna, balanced amplifier as amplifying components, and coplanar stripline(CPS) as the delay line fer the beam focusing are used fur composing the stable wideband lens amplifier. The $5{\times}5$ 2D lens amplifier has the characteristics that the absolute gain is 7.5 dB, the EIPG is 37.4 dB at 6 GHz, and the 3-dB gain bandwidth is 19.8 %.

Design, Linear and Efficient Analysis of Doherty Power Amplifier for IMT-2000 Base Station (IMT-2000 기지국용 도허티 전력증폭기의 설계 및 선형성과 효율 분석)

  • Kim Seon-Keun;Kim Ki-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.262-267
    • /
    • 2005
  • During several method of improvement efficient, We analyzed Doherty Amplifier That used by simple circuit and 180w PEP LDMOS to analyze improvement of efficient and linearity. We for testing performance of Doherty Amplifier compared with Balanced Class AB, the experimental results show when Peaking Amp $V_gs.P$=1.53V, the efficiency is increased at Maximum 11.6$\%$. After finding optimum bias point of linearity improvement by manual tuning gate bias, when WCDMA 4FA $V_gs.P$=3.68V IMSR could be increased maximum 3.34dB. especially, when we match bias point of Peaking amp at 1.53V, we could get a excellent efficiency increase and have fUR under -3203c at output power 43dBm.

Adjustable-Performace, Single-Ended Input Double-Balanced Mixer

  • Choi, Jin-Yong;Lee, Kyung-Ho;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.248-252
    • /
    • 2001
  • A noble single-ended input, double-balanced mixer topology is proposed. The mixer incorporates the common-source amplifier input stage with inductive degeneration for impedance matching. The analysis based on simulations shows that the overall performance of the mixer is excellent and is adjustable by varying the input transistor size to give best characteristics for the given linearity specifications.

  • PDF

A High-Efficiency 2 GHz Balanced Pulse Generator for Ground Penetrating Radar System (평형구조를 이용한 지표투과레이다용 2 GHz 대역 고효율 펄스발생기)

  • Jeong, Heechang;Seo, Munkyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.928-931
    • /
    • 2017
  • This paper presents a 2 GHz pulse generator in balanced configuration for ground penetrating radar(GPR). In order to improve the input and output matching, the pulse generator is designed in balanced configuration with $90^{\circ}$ hybrid couplers. The designed pulse generator was fabricated using PCB process. The fabricated pulse generator draws 1 mA current from a 5 V power supply with 27.6 % efficiency. The measured output voltage swing is $3.7V_{pp}$ at 100 MHz pulse repetition frequency(PRF). The pulse width is 2 ns and the input and output return loss is more than 10 dB at the operating frequency of 1.7~2.6 GHz.

Design of Predistortion Linearizer using Common-Gate MESFET (공통 게이트 MESFET를 이용한 전치왜곡 선형화기 설계)

  • 주성남;박청룡;최조천;최충현;김갑기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.53-56
    • /
    • 2003
  • A linear power amplifier is particularly emphasized on the CDMA system using a linear modulation scheme, because IMD which cause adjacent channel interference and co channel Interference is mostly generated in a nonlinear power amplifier. In this paper, a new type of linearization technique proposed. It is presented that balanced MESFET predistortion linearizer added. Experimental result are present for Korea PCS frequency band. The implemented linearizer is applied to a 30dBm class. A power amplifier for simulation performance. Two-tone signals at 1850 MHz and 1851.23 MHz are injected into the main power amplifier. The main power amplifier with a 12.1dB gain and a P1dB of 30 dBm(two-tone) was utlized. The reduction of IMD is around 22dB.

  • PDF

A study on the Design of Predistortion Linearizer using Common-Gate MESFET (공통 게이트 MESFET를 이용한 전치왜곡 선형화기 설계에 관한 연구)

  • 김갑기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1369-1373
    • /
    • 2003
  • A linear power amplifier is particularly emphasized on the CDMA system using a linear modulation scheme, because IMD which cause adjacent channel interference and co channel interference is mostly generated in a nonlinear power amplifier. In this paper, a new type of linearization technique proposed. It is presented that balanced MESFET Predistortion linearizer added. Experimental result are present for Korea PCS frequency band. The implemented linearizer is applied to a 30㏈m class A power amplifier for simulation performance. Two-tone signals at 1850 MHz and 1851.23 MHz are injected into the main power amplifier. The main power amplifier with a 12.1㏈ gain and a P1㏈ of 30 ㏈m(two-tone) was utilized. The reduction of IMD is around 22㏈.