• Title/Summary/Keyword: Bacterial inoculants

Search Result 31, Processing Time 0.023 seconds

Optimization of Indole-3-Acetic production by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Noh, Jae-Geun;Kim, Chan Kyem;Kyung, Ki-Cheon;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.53-62
    • /
    • 2013
  • A total of 35 phosphate solubilizing bacterial strains were isolated from waste mushroom bed of Agaricus bisporus in Buyeo-Gun, Chungnam and screened for the production of indole acetic acid (IAA). The best IAA producing strain was identified as Pantoea rodasii using 16S rRNA analysis. In addition to the IAA production, this strain could act as an efficient phosphate solubilizer (1100 ${\mu}g$ $ml^{-1}$ after 5 days of incubation) also. The selected strain was cultured under different conditions in order to assess the optimum conditions for maximum IAA production. The nutrient broth (NB) medium was recorded as the best medium, where the maximum IAA production (229 ${\mu}g$ $ml^{-1}$) was recorded at the start of stationary phase (12 hours after inoculation) of the bacteria growth. The performance of the strain was found to be maximum at the temperature of $30^{\circ}C$ followed by $25^{\circ}C$. IAA production was found to be increased with increasing tryptophan concentration (from 0.1 to 0.6%), however beyond this limit, a slight reduction in IAA production was observed. The strains' ability to produce IAA was further confirmed by extraction of crude IAA and subsequent TLC analysis. A specific spot from the extracted IAA preparation was found corresponding with the standard spot of IAA with same $R_f$ value. The results of HPLC analysis conducted in identifying and quantifying the IAA production more precisely, are in agreement with the results of the assessment done with colorimetric method. As revealed by the results of the pot experiment, the isolated strain could significantly enhance the growth (as measured by shoot and root growth) of mung bean plants compared to that of non-inoculated plants. Therefore it can be concluded that the present strain, Pantoea rodasii has great potential to be used as bio-inoculants.

Effect of Azospirillum brasilense and Methylobacterium oryzae Inoculation on Growth of Red Pepper (Capsicum annuum L.)

  • Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • Plant growth-promoting effects of rhizobacterial inoculation obtained in pot experiments cannot always be dependably reproduced in fields. In this study, we investigated the effect of inoculation with Azospirillum brasilense and Methylobacterium oryzae, which have displayed growth promoting effects in several pot experiments, on growth and fruit yield of red pepper under field condition in a plastic-film house. Four rows spaced 90 cm apart were prepared after application of compost ($10Mg\;ha^{-1}$), and red pepper seedlings (Capsicum annum L., Nocgwang) were transplanted in each row with 40-cm space. Experimental treatments were consisted of A. brasilense CW903 inoculation, M. oryzae CBMB20 inoculation, and uninoculated control. Twelve plots, 10 plants per plot, were allotted to the three treatments with four replicates in a completely randomized design. At the time of transplanting, 50 mL of each inoculum ($1{\times}10^8cells\;mL^{-1}$) was introduced into root zone soil of each plant, and re-inoculated at 7 and 14 days after transplant. Plant growth and fruit yield were measured during the experiment. Both A. brasilense CW903 and M. oryzae CBMB20 could not promote growth of red pepper plants. All growth parameters measured were not significantly different among treatments. There were large variations in fruit yield recorded on plot basis, and no statistically significant differences were found among treatments. The failure to demonstrate the expected plant growth promoting effect of the inoculants is possibly due to various environmental factors, including weather and soil characteristics, reducing the possibility to express the potential of the inoculated bacterial strains.

Molecular Diversity of Rhizobacteria in Ginseng Soil and Their Plant Benefiting Attributes (인삼토양 내 근권세균의 다양성 및 식물에의 유용 특성)

  • Hong, Eun Hye;Lee, Sun Hee;Vendan, Regupathy Thamizh;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.246-253
    • /
    • 2012
  • The purpose of this study was to investigate the molecular diversity of rhizobacteria associated with ginseng of varying age levels and their plant benefiting attributes. A total of 143 different isolates belonging to 15 different bacterial genera were recovered. Although variation was found in the rhizobacterial community due to age of the plant, majority of bacteria belong to Firmicutes (58%). In which, Bacillus was found to be the predominant genus irrespective of age of the ginseng. To assess the plant benefiting attributes, 30 representative isolates were selected. The results indicated that some of the isolates could exhibit multiple plant growth promoting traits like secretion of cell wall degrading enzymes, production of indole-3-acetic acid, synthesis of siderophores, solubilization of phosphates and soil pathogens inhibition. It can be suggested that strains of B. subtilis, B. amyloliquefaciens, B. velezensis, and B. licheniformis were positive for all the above traits, which have potential to be used as plant growth promoting inoculants to improve ginseng crop in the future.

Lactic acid bacteria strains selected from fermented total mixed rations improve ensiling and in vitro rumen fermentation characteristics of corn stover silage

  • Huang, Kailang;Chen, Hongwei;Liu, Yalu;Hong, Qihua;Yang, Bin;Wang, Jiakun
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1379-1389
    • /
    • 2022
  • Objective: This study identified the major lactic acid bacteria (LAB) strains from different fermented total mixed rations (FTMRs) via metataxonomic analysis and evaluated the ability of their standard strain as ensiling inoculants for corn stover silage. Methods: The bacterial composition of eight FTMRs were analyzed by 16S rDNA sequencing. Corn stover was ensiled without LAB inoculation (control) or with 1×106 cfu/g LAB standard strain (Lactobacillus vaginalis, Lactobacillus reuteri, Lactobacillus helveticus, or Lactobacillus paralimentarius) selected from the FTMRs or 10 g/t commercial silage inoculant (CSI) around 25℃ for 56 days. For each inoculation, a portion of the silage was sampled to analyze ensiling characteristics at time intervals of 0, 1, 3, 7, 14, 28, and 56 days, gas production (GP), microbial crude protein and volatile fatty acids as the measurements of rumen fermentation characteristics were evaluated in vitro with the silages of 56 days after 72 h incubation. Results: Lactobacillus covered >85% relative abundance of all FTMRs, in which L. pontis, L. vaginalis, L. reuteri, L. helveticus, and L. paralimentarius showed >4% in specific FTMRs. CSI, L. helveticus, and L. paralimentarius accelerated the decline of silage pH. Silage inoculated with L. paralimentarius and CSI produced more lactic acid the early 14 days. Silage inoculated with L. paralimentarius produced less acetic acid and butyric acid. For the in vitro rumen fermentation, silage inoculated with CSI produced more potential GP, isobutyric acid, and isovaleric acid; silage inoculated with L. helveticus produced more potential GP and isovaleric acid, silage inoculated with L. paralimentarius or L. reuteri produced more potential GP only. Conclusion: The standard strain L. paralimentarius (DSM 13238) is a promising ensiling inoculant for corn stover silage. The findings provide clues on strategies to select LAB to improve the quality of silage.

Lactic acid bacterial inoculant effects on the vitamin content of alfalfa and Chinese leymus silage

  • Jia, Tingting;Sun, Zhiqiang;Gao, Run;Yu, Zhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1873-1881
    • /
    • 2019
  • Objective: Information regarding the vitamin content of silage is limited. This study investigated the changes in the vitamin content of alfalfa and Chinese leymus silages with or without a lactic acid bacterial inoculant. Methods: Alfalfa at the early flowering stage and Chinese leymus at the full-bloom stage were harvested. The treatments for each forage type were control (deionized water only) and $1{\times}10^6$ colony-forming units Lactobacillus plantarum (LP)/g fresh matter. After 45 days of ensiling, all silages were sampled for evaluating the vitamin content, fermentation quality and chemical composition. Results: The LP inoculant decreased the pH value and ammonia nitrogen content of the alfalfa and Chinese leymus silages and significantly (p<0.05) increased the lactic acid, acetic acid concentrations and Flieg's points. Prior to ensiling, the levels of five B-group vitamins (thiamin, riboflavin, niacin, pantothenic acid, and pyridoxine) and ${\alpha}$-tocopherol in alfalfa were significantly (p<0.01) higher than those in Chinese leymus. Ensiling decreased the levels of the five B-group vitamins in both alfalfa and Chinese leymus while increasing the ${\alpha}$-tocopherol content of Chinese leymus. The thiamin, riboflavin, niacin and pantothenic acid levels in the LP-treated silage were significantly (p<0.05) lower than those in the untreated silage for the alfalfa and Chinese leymus. The ${\alpha}$-tocopherol content in the LP-treated alfalfa silage was significantly (p<0.05) higher than that in the untreated alfalfa silage. There was no significant (p>0.05) difference in pyridoxine content between the untreated and LP-treated silages for both forages. Conclusion: With or without LP inoculation, the levels of the five B-group vitamins (thiamin, riboflavin, niacin, pantothenic acid, and pyridoxine) in alfalfa and Chinese leymus decreased after 45 days of ensiling, while the ${\alpha}$-tocopherol content of Chinese leymus increased. The LP inoculant improved the fermentation quality of both the alfalfa and Chinese leymus silages but increased the thiamin, riboflavin, niacin, and pantothenic acid loss in the two forages after fermentation.

Effect of Trehalose on the Viability of Fluorescent Pseudomonas, Strain SSL3 (형광성 Pseudomonas, SSL3 균주의 생존율에 미치는 Trehalose의 효과)

  • Seong, Ki-Young;Ryu, Ok-Ran;Choi, Won-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.292-301
    • /
    • 2000
  • To make a better use of the beneficial bacterial inoculants in the agricultural practice, dry forms of bacterial fertilizer or pesticides are prepared with carrier materials. During the drying process of bacterial inoculant, most of the cells face a severe osmotic pressure and dehydration, and die off. Our study describes the effect of osmoprotectants such as trigonelline and trehalose on the survival of bacterial cells in high salt concentration and drying conditions. A fluorescent Pseudomonas, strain SSL3, used in this study, could grow in high salt concentration of upto 5% but the cells could not overcome the growth retardation at over 7% of salt concentration. The addition of trigonelline, even on small amount, in liquid medium containing 4% NaCl was detrimental to the cell. However, the addition of trehalose of upto 10 mM to the liquid medium containing 4% NaCl, enhanced cell growth. The cell growth was retarded when 150mM trehalose was added to the medium. Upon dry formulation of cells, trehalose was added. And the dry cells were inoculated into the soil to determine the effect of osmoprotectants on the survival of the cells. The survival of the cells, both in wet or dry soil, was improved by the addition of trehalose during the dry cell formulation. The positive effect of trehalose on the cell survival at $-20^{\circ}C$ and $-70^{\circ}C$ was oven more pronounced. The FTIR (Fourier transformation infra-red) spectroscopic analysis showed that the change of the 2nd amide group was reduced by adding trehalose to the medium containing 4% NaCl. These results suggest that trehalose can protect the cell membrane from dryness or high concentration of salt, thereby diminishing the sudden change of the protein structure of the cell membrane and, as a consequence, improving the cell survival.

  • PDF

Effect of Lactic acid bacteria and Enzyme Supplementation on Fermentative Patterns of Ensiling Silages, Their In vitro Ruminal Fermentation, and Digestibility (젖산균과 효소제 처리에 의한 동계사료작물 발효성상, In vitro 반추위 발효 및 소화율에 미치는 영향 연구)

  • Lee, A-Leum;Shin, Su-Jin;Yang, Jinho;Cho, Sangbuem;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • The objective of this study was to determine the effect of bacterial inoculation (Lactobacillus plantarum or combo inoculant mixed with Lactobacillus plantarum and Lactobacillus buchneri) and addition of fibrolytic enzyme on chemical compositions and fermentation characteristics of whole crop barley (WCB) and triticale (TRT) silage, their ruminal in vitro fermentation, and digestibility. In TRT silage, enzyme addition significantly (p<0.01) decreased NDF content compared to no enzyme addition treatment. Organic acids such as lactate and acetate contents in WCB and TRT silages were significantly (p<0.01) higher compared to those in the control. Particularly, lactate content was the highest in L. plantarum treatment. Fibrolytic enzyme treatment on both silages had relatively higher lactic acid bacteria content, while mold content was lower in both treatments compared to that in the control. In vitro dry matter digestibility was generally improved in WCB silages. It was higher (p<0.01) in TRT with mixed treatment of L. plantarum, L. buchneri, and enzyme compared to others. In vitro ruminal acetate production was relatively higher in treatments with both enzyme and inoculant additions compared to that in the control. Therefore, the quality of silage and rumen fermentation could be improved by inoculants (L. plantarum and L. buchneri) regardless whether whole crop barley (WCB) or triticale (TRT) silage was used. Although it was found that fibrolytic enzyme addition to both silages had various quality and rumen fermentation values, further study is needed.

The Effect of Bacterial Inoculants and a Chemical Preservative on the Fermentation and Aerobic Stability of Whole-crop Cereal Silages

  • Filya, Ismail;Sucu, Ekin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.378-384
    • /
    • 2007
  • Three microorganisms and one chemical preservative were tested for their effects on the fermentation and aerobic stability of whole-crop wheat, sorghum and maize silages. Wheat at the early dough stage, sorghum at the late milk stage and maize at the one-third milk line stage were harvested and ensiled in 1.5-l anaerobic jars untreated or after the following treatments: control (no additives); Lactobacillus plantarum (LP) at $1.0{\times}10^6$ colony-forming units (CFU)/g of fresh forage; L. buchneri (LB) at $1.0{\times}10^6$ CFU/g; Propionibacterium acidipropionici (PA) at $1.0{\times}10^6$ CFU/g; and a formic acid-based preservative (FAP) at 3 ml/kg of fresh forage weight. Three jars per treatment were sampled on d 90 after ensiling, for chemical and microbiological analysis. At the end of the ensiling period, 90 d, the silages were subjected to an aerobic stability test lasting 5 d. In this test, $CO_2$ produced during aerobic exposure was measured along with chemical and microbiological parameters which serve as spoilage indicators. The silages inoculated with LP had higher concentration of lactic acid compared with the controls and the other treated silages (p<0.05). The controls and LP-inoculated silages spoiled upon aerobic exposure faster than LB, PA and FAP-treated silages. The controls and LP-inoculated silages spoiled upon aerobic exposure faster than LB, PA and FAP-treated silages due to more $CO_2$ production (p<0.05) in these two groups and development of yeasts unlike the other groups. In the experiment, the silages treated with LB, PA and FAP were stable under aerobic conditions. However, the numbers of yeasts was higher in the LP-inoculated wheat, sorghum and maize silages compared with the LB, PA and FAP-treated silages. The LB, PA and FAP improved the aerobic stability of the silages by causing more extensive heterolactic fermentation that resulted in the silages with high levels of acetic and propionic acid. The use of LB, PA and FAP as silage additives can improve the aerobic stability of whole-crop wheat, sorghum and maize silages by inhibition of yeast activity.

Effect of Addition of Lactic Acid Bacteria on Quality of Rye Silage Harvested at Early Heading Stage (젖산균 첨가가 출수초기 호밀 사일리지의 품질에 미치는 영향)

  • Choi, Ki-Choon;Srigopalram, Srisesharam;Ilavenil, Soundharrajan;Kuppusamy, Palaniselvam;Park, Hyung-Su;Yoon, Yong Hee;Jung, Jeong Sung;Kim, Ji Hye;Kim, Hyun Seup
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.332-336
    • /
    • 2017
  • This study was conducted to investigate the effect of addition of lactic acid bacteria inoculants on quality of rye silage harvested at early heading stage. The nutritive values in lactic acid bacteria (LAB) inoculated group showed similar results to control. The pH of rye silage in LAB inoculation significantly decreased as compared to control (p<0.05). In addition, the content of lactic acid in LAB inoculation significantly increased (p<0.05), but the content of acetic acid in LAB treatments decreased. In addition, lactic acid bacterial counts in LAB inoculation significantly increased as compared to control (p<0.05). Therefore, we suggest that rye silage could be improved by LAB inoculation.

Development of a new lactic acid bacterial inoculant for fresh rice straw silage

  • Kim, Jong Geun;Ham, Jun Sang;Li, Yu Wei;Park, Hyung Soo;Huh, Chul-Sung;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.950-956
    • /
    • 2017
  • Objective: Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Methods: Lactic acid bacteria (LAB) from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821) were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841), two commercial inoculants (HM/F and P1132) and no additive as a control. Results: After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p<0.05). Acidity (pH) was lowest, and lactic acid highest, in 1821-treated silage (p<0.05). The $NH_3-N$ content decreased significantly in inoculant-treated silage (p<0.05) and the $NH_3-N$ content in 1821-treated silage was lowest among the treatments. The dry matter (DM) content of the control silage was lower than that of fresh rice straw (p<0.05), while that of the 1841- and p1174-inoculant-treated silages was significantly higher than that of HM/F-treated silage. Microbial additives did not have any significant (p>0.05) effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP) content and in vitro DM digestibility (IVDMD) increased after inoculation of LAB 1821 (p<0.05). Conclusion: LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, $NH_3-N$, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.